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Abstract 
Artificial Intelligence (AI) has become the undisputed 

protagonist of most technological development projects. 
To develop AI, a learning (training) phase is fundamental, 
in fact, it is the moment in which the artificial intelligence 
system learns to repeat precise operations in the presence 
of certain inputs, just as a student at school learns to give 
the correct answers to the questions that are asked. The 
longer and more detailed the training will be, the more 
situations and requests (inference) that the AI will be able 
to manage in an appropriate manner. Obviously, all this 
requires a great computing power that not everyone can 
access. A possible candidate could be Arduino since many 
less experienced users are able to manage and program it, 
but it turns out to be a platform that is not powerful 
enough to support these operations. For this reason, we 
have created a field-programmable gateway array shield 
for artificial intelligence (FPGA2I shield) as an accelera-
tor for Arduino, and will introduce it here. The board is 
able to guarantee a great computing power in all the 
phases of programming artificial intelligence and is also 
totally modifiable and reconfigurable at will.  

In the past few years, deep learning has contributed to sig-
nificant progress and success for various AI applications, in-
cluding image recognition [2], [3], natural language pro-
cessing [4], and reinforcement learning [5]. However, such 
applications have been built mainly within the cloud-based 
domain accelerated by powerful TPUs [6] and GPUs more 
than hundreds of watts of power. By contrast, in an edge do-
main with applications including smartphones, drones, and 
other smart products, smaller AI accelerators or IPs have re-
cently started to be utilized or embedded as inference engines; 
e.g., Edge TPU, Jetson Nano, Myriad, A12 Bionic and Ki-
rin970, etc. However, these can be recognized simply as
scaled-down versions from the cloud domain to the edge do-
main, leaving their learning capability on the cloud. As a re-
sult, they provide few originalities owing to a lack of learning
ability to determine the features and behaviors of humans and
their environment on-site, and few capabilities to keep per-
sonal privacy. To make the AI in the edge domain more at-
tractive and fruitful, two key issues are considerably im-
portant and need to be solved.

First, from the viewpoint of technical issues, low-power 
and low-resource AI devices utilizing an online learning al-
gorithm are required. To develop an effective technique, var-
ious algorithms of bit-width quantization and a sparsification 

of the weights and neurons have been studied [7], [8], [9], 
[10], [11], [12], [13]. Among them, ternary quantization [14], 
[15], [1] has recently become more attractive as a way to pro-
vide the best balance between a reduction of power and the 
resources of the AI engine while maintaining the quality dur-
ing the inference and training stages. Meanwhile, for training 
at the edge, several papers have been published [16], [17], 
[18], [19]. In [16] and [18], a larger bit-width of more than 8 
bits has been considered. In addition, the authors of [17] 
demonstrated a flexible architecture with a bit width ranging 
from 16 bits down to 1 bit. However, the architecture could 
not be optimized for a lower bit width. In [14] and [15], the 
authors described a ternary quantization algorithm using sev-
eral techniques and presented a state-of-the-art results with-
out any degradation in the recognition accuracy. However, its 
target is to achieve a higher accuracy, which differs from our 
approach, which places the priority on both lowest-power and 
lowest-resource devices. 

Second, from the viewpoint of platform development, an 
AI open-innovation platform is required, upon which anyone 
can touch, enjoy, build, and use their own AI systems. The 
objective of the platform is exploring “killer applications” 
that can inspire activities and stimulate more creativity over 
various research and development scenes. Several large pro-
jects on open-innovation platforms have been promoted using 
specialized hardware [20], [21], [22] and commonly used 
software, including Tensorflow, PyNN, and etc., and collab-
orated with partners in industry, academia, and private indi-
viduals (makers). A do-it-yourself AI project (AIY), started 
in around 2017 with their software frame-work, TensorFlow, 
connected edge devices to the cloud, and allowed collabora-
tion with “makers” who are individuals familiar with hard-
ware prototyping and basic programming, and have the pas-
sion and potential to create their own AI systems based on 
their knowledge and ideas. In addition, an AI democratization 
movement [23] started in 2016-2017 and studied the effec-
tiveness and importance of the collaboration with the makers 
who are not familiar with the AI and released the maker kit 
for them in 2018. Some projects have started using brain-in-
spired chips [20], [21], [22], collaborating mainly with aca-
demic institutions, and have been challenged to explore new 
AI systems and create new applications. In [20], the authors 
targeted low-power applications including IoTs using their 
low-power inference engine, TrueNorth. In [21] and [22], the 
researchers challenged the new AI exploration using Loihi 
[22] and its STDP (spike-timing dependent plasticity) learn-
ing mechanism.
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Motivated by the above observations, we adapted and im-
plemented a backpropagation algorithm to a reconfigurable 
hardware platform of the FPGA as an AI accelerator. Using 
this, we built an FPGA AI accelerator shield (FPGA2I shield), 
which has external memory on the shield for mainly storing 
the weights of neural networks and an interface compatibility 
with a micro controller (Arduino). Our system is composed 
of the FPGA2I shield, micro controller, and various interface 
shields like sensors and actuators. This system was evaluated, 
analyzed, and verified by not only us but makers through our 
user-driven open-innovation AI platform with AI software in-
cluding basic and various example applications. For the de-
tails, please visit our website: https://fpga2i.org.
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