
 

 

Direct estimation of the energy gap between the ground state and excited state 

 with quantum annealing 
 

Yuichiro Matsuzaki1, Hideaki Hakoshima1, Kenji Sugisaki2, Yuya Seki1 and Shiro Kawabata 1 
 

1 Device Technology Research Institute, National institute of Advanced Industrial Science and Technology (AIST), 

Central2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, JAPAN  
2 Department of Chemistry and Molecular Materials Science, Graduate School of 

Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 

Phone: +81-29-861-3483 E-mail: matsuzaki.yuichiro@aist.go.jp 

 

Abstract 

Quantum chemistry is one of the important applications 

of quantum information technology. Especially, an esti-

mation of the energy gap between a ground state and ex-

cited state of a target Hamiltonian corresponding to a 

molecule is essential in medical areas. In the previous ap-

proach, an energy of the ground state and that of the ex-

cited state are estimated separately, and the energy gap 

can be calculated from the subtraction between them. 

Here, we propose a direct estimation of the energy gap be-

tween the ground state and excited state of the target 

Hamiltonian with quantum annealing. The key idea is to 

combine a Ramsey type measurement with the quantum 

annealing. This provides an oscillating signal with a fre-

quency of the energy gap, and a Fourier transform of the 

signal let us know the energy gap. Based on typical pa-

rameters of superconducting qubits, we numerically in-

vestigate the performance of our scheme when we esti-

mate an energy gap between the ground state and first ex-

cited state of the Hamiltonian. We show robustness 

against non-adiabatic transitions between the ground 

state and first-excited states. Our results pave a new way 

to estimate the energy gap for quantum chemistry. 

 

1. Introduction 

Quantum annealing (QA) has been studied as a way to solve 

combinational optimization problem [1,2] where the goal is 

to minimize a cost function. Such a problem is mapped into a 

finding of a ground state of Ising Hamiltonians that contain 

the information of the problem. QA is designed to find an en-

ergy eigenstate of the target Hamiltonian by using adiabatic 

dynamics. So, by using the QA, we can find the ground state 

of the Ising Hamiltonian for the combinational optimization 

problem. 

Recently, it was shown that the QA can be also used for 

quantum chemistry calculations [3,4]. Important properties of 

molecules can be investigated by the second quantized Ham-

iltonian of the molecules. Especially, the energy gap between 

the ground state and excited states is essential information for 

such a study [3]. The second quantized Hamiltonian can be 

mapped into the Hamiltonian of qubits [4]. Importantly, not 

only the ground state but also the excited state of the Hamil-

tonian can be prepared by the QA [5]. By measuring suitable 

observable on such states prepared by the QA, we can esti-

mate the eigenenergy of the eigenstates. In the conventional 

approaches, we need to perform two separate experiments to 

estimate an energy gap between the ground state and the ex-

cited state. In the first (second) experiment, we measure the 

eigenenergy of the ground (excited) state prepared by the QA. 

From the subtraction between the estimation of the 

eigenenergy of the ground state and that of the excited state, 

we can obtain the information of the energy gap. 

Here, we propose a way to estimate an energy gap between 

the ground state and excited state in a more direct manner. 

The key idea is to use the Ramsey type measurement where a 

superposition between the ground state and excited state ac-

quires a relative phase that depends on the energy gap [7]. By 

performing a Fourier transform of the signal from the Ramsey 

type experiments, we can estimate the energy gap. We nu-

merically study the performance of our protocol to estimate 

the energy gap between the ground state and first excited state. 

We show robustness of our scheme against non-adiabatic 

transitions between the ground state and first excited state.   

2. Estimation of the energy gap between the ground 

state and excited state based on the Ramsey type 

measurement 

𝐻QA = (1 −
𝑡

𝑇
)𝐻D +

𝑡

𝑇
𝐻P                                            (1) 

  𝐻R = 𝐻P                                                                      (2) 

𝐻RQA =
𝑡 − (𝑇 + τ)

𝑇
𝐻D + (1 −

𝑡 − (𝑇 + τ)

𝑇
)𝐻P          (3) 

where 𝐻QA  denotes the Hamiltonian that are used in the 

standard QA, 𝐻D denotes the driving Hamiltonian that are 

typically chosen as the transverse magnetic field terms, 𝐻P 

denotes the target (or problem) Hamiltonian whose energy 

gap we want to know, 𝐻R denotes the Hamiltonian for the 

Ramsey type evolution, and 𝐻RQA denotes the Hamiltonian 

that are used in a reverse QA [8]. Firstly, prepare an initial 

state of |𝜑0>=(|E0
(D)>+| E1

(D)>)/√2 where   | E0
(D)> (|E1

(D)>) 

denotes the ground (excited) state of the driving Hamiltonian. 

Secondly, let this state evolve by the Hamiltonian of 𝐻QA 

from t=0 to t=T, and we obtain a state of 

(|E0
(P)>+ 𝑒−𝑖𝜃 |E1

(P)>)/√2 if the dynamics is adiabatic where   

| E0
(P)> (|E1

(P)>) denotes the ground (excited) state of the target 

Hamiltonian and 𝜃 denotes a relative phase acquired during 

the dynamics. Thirdly, let the state evolve by the Hamiltonian 
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of 𝐻R  for a time τ , and we obtain (|E0
(P)>+ 𝑒−𝑖∆𝐸τ−i𝜃 | 

E1
(P)>)/√2 where ∆𝐸 = E1

(P)- E0
(P) denotes an energy gap 

and E0
(P) (E1

(P)) denotes the eigenenergy of the ground (first 

excited) state of the target Hamiltonian. Fourthly, let this state 

evolve by the Hamiltonian of 𝐻RQA from t=T+τ to t=2T+τ, 

and we obtain a state (|E0
(D)>+𝑒−𝑖∆𝐸τ−i𝜃′| E1

(D)>)/√2 if the 

dynamics is adiabatic where 𝜃′ denotes a relative phase ac-

quired during the dynamics.. Fifthly, we readout the state by 

using a projection operator of |𝜑0>< 𝜑0|, and the projection 

probability is 𝑃τ = (1 + cos  (∆𝐸τ + 𝜃′))/2, which is an os-

cillating signal with a frequency of the energy gap. Finally, 

we repeat the above five steps by sweeping τ, and obtain sev-

eral values of 𝑃τ. We can perform the Fourier transform of 

𝑃τ such as  

𝑓(ω) = ∑(𝑃𝜏𝑛
− 0.5)𝑒−𝑖ωτ𝑛   

𝑁

𝑛=1

                                       (4) 

where τ𝑛 = t𝑚𝑖𝑛 + (𝑛 − 1)/((𝑁 − 1)(t𝑚𝑎𝑥 − t𝑚𝑖𝑛))  de-

notes a time step, t𝑚𝑖𝑛  (t𝑚𝑎𝑥) denotes a minimum (maxi-

mum) time to be considered, and 𝑁 denotes the number of 

the steps. The peak in |𝑓(ω)| shows the energy gap ∆𝐸.  

To check the efficiency, we perform the numerical simula-

tions to estimate the energy gap between the ground state and 

first excited state, based on typical parameters for supercon-

ducting qubits. We choose the following Hamiltonians. 

𝐻𝐷 = ∑
λ𝑖

2
𝜎𝑥

(𝑖)
  

𝐿

𝑖=1

                                       (4) 

𝐻𝑃 = ∑
ω𝑖

2
𝜎𝑧

(𝑖)
 

𝐿

𝑖=1

+ ∑ 𝑔 𝜎𝑧
(𝑖)

𝜎𝑧
(𝑖+1)

+ 𝑔′ (𝜎+
(𝑖)

𝜎−
(𝑖+1) + ℎ𝑐)  

𝐿−1

𝑖=1

 (5) 

where λ𝑖  denotes the amplitude of the transverse magnetic 

fields of the i-th qubit, ω𝑖  denotes the frequency of the i-th 

qubit, and 𝑔 (𝑔′) denotes the Ising (flip-flop) type coupling 

strength between qubits. The initial state is |1>|-> where |1> 

(|->) is an eigenstate of 𝜎𝑧 (𝜎𝑥) with an eigenvalue of +1 (-

1). In the Fig. 1, we plot the Fourier function 𝑓(ω) against 

ω for this case. We have a peak around ω = 1.067GHz, 

which corresponds to the energy gap ∆𝐸  of the problem 

Hamiltonian in our parameter. So this result shows that we 

can estimate the energy gap by using our scheme. 

Also, we have a smaller peak of around ω = 0 in the Fig.1, 

and this comes from non-adiabatic transitions between the 

ground state and first excited state. If the dynamics is per-

fectly adiabatic, the population of both the ground state and 

first excited state should be 1/2 at t=T. However, in our pa-

rameters with T=150 (75) ns, the population of the ground 

state and excited state is around 0.6 (0.7) and 0.4 (0.3) at t=T, 

respectively. In this case, the probability at the readout step 

should be modified as 𝑃τ = (𝑎 + 𝑏 cos  (∆𝐸τ + 𝜃′)) where 

the parameters 𝑎 and 𝑏 deviates from 1/2 due to the non-

adiabatic transitions. This induces the peak of around ω = 0 

in the Fourier function 𝑓(ω). As we decrease T, the dynam-

ics becomes less adiabatic, and the peak of ω = 0 becomes 

higher while the target peak corresponding the energy gap 

∆𝐸 becomes smaller as shown in the Fig. 1. Importantly, we 

can still identify the peak of the energy gap for the following 

reasons. First, there is a large separation between the peaks. 

Second, the non-adiabatic transitions do not affect the peak 

position. So our scheme is robust against the non-adiabatic 

transition between the ground state and first excited state. 

This is stark contrast with a previous scheme that is fragile 

against such non-adiabatic transitions [6]. 

 
Fig. 1 Fourier function against a frequency. Here, we set parameters 

as λ1/2π=1 GHz, g/2π=0.5 GHz, ω1/2π=0.2 GHz, ω2/ω1=1.2, 

g’/g=2.1, λ2/ λ1=10.7, L=2, N=10000, tmin=0, and tmax=100 ns. Also, 

we set T=150 (75) ns for the blue (red) plot.   

5. Conclusions 

   In conclusion, we propose a scheme that allows the direct 

estimation of an energy gap of the target Hamiltonian by us-

ing quantum annealing (QA). While a ground state of a driv-

ing Hamiltonian is prepared as an initial state for the conven-

tional QA, we prepare a superposition between a ground state 

and the first excited state of the driving Hamiltonian as the 

initial state. Also, the key idea in our scheme is to use a Ram-

sey type measurement after the quantum annealing process 

where an information of the energy gap is encoded as a rela-

tive phase between the superposition. The readout of the rel-

ative phase by sweeping the Ramsey measurement time du-

ration provides a direct estimation of the energy gap of the 

target Hamiltonian. Our scheme paves an alternative way to 

estimate the energy gap of the target Hamiltonian for appli-

cations of quantum chemistry. 
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