The 33rd International Conference on Arabidopsis Research (ICAR2023)

Presentation information

Poster1

Poster » 33 Imaging/Quantification

[P] 33 Imaging/Quantification

Tue. Jun 6, 2023 9:00 AM - 6:00 PM Poster 33(Meeting Room 10)

[PO-717] Time-series field phenotyping system PlantServation using machine learning revealed seasonal pigment fluctuation trends in diploid and polyploid Arabidopsis

[on-site]

*Toshiaki Tameshige1,2, Reiko Akiyama3, Takao Goto4, Jiro Sugisaka5,1, Ken Kuroki6, Jianqiang Sun7, Junichi Akita8, Masaomi Hatakeyama3,9, Hiroshi Kudoh5, Tanaka Kenta10, Aya Tonouchi4, Yuki Shimahara4, Jun Sese11,12,13, Natsumaro Kutsuna4, Rie Shimizu-Inatsugi3, Kentaro K Shimizu1,3 (1. Yokohama City University, Japan, 2. Nara Institute of Science and Technology, Japan, 3. University of Zurich, Switzerland, 4. LPixel Inc., Japan, 5. Kyoto University, Japan, 6. The University of Tokyo, Japan, 7. NARO, Japan, 8. Kanazawa University, Japan, 9. Functional Genomics Center Zurich, Switzerland , 10. University of Tsukuba, Japan, 11. AIST, Japan , 12. Humanome Lab, Inc., Japan, 13. AIST-Tokyo Tech RWBC-OIL, Japan)

Keywords:Abiotic response, Imaging/quantification, Evolution, Database/software/bioinformatics