日本地球惑星科学連合2014年大会

講演情報

インターナショナルセッション(口頭発表)

セッション記号 A (大気海洋・環境科学) » A-CG 大気海洋・環境科学複合領域・一般

[A-CG06_29PM1] Satellite Earth Environment Observation

2014年4月29日(火) 14:15 〜 16:00 315 (3F)

コンビーナ:*沖 理子(宇宙航空研究開発機構)、本多 嘉明(千葉大学 環境リモートセンシング研究センター)、奈佐原 顕郎(筑波大学生命環境系)、中島 孝(東海大学情報デザイン工学部情報システム学科)、沖 大幹(東京大学生産技術研究所)、横田 達也(国立環境研究所 地球環境研究センター)、高薮 縁(東京大学大気海洋研究所)、村上 浩(宇宙航空研究開発機構地球観測研究センター)、岡本 創(九州大学 応用力学研究所)、座長:中島 孝(東海大学情報デザイン工学部情報システム学科)、岡本 創(九州大学)

15:30 〜 15:45

[ACG06-26] 雲水平不均質性に起因する雲特性リトリーバルのバイアス誤差の推定手法

*永尾 隆1中島 孝1 (1.東海大学)

Clouds play an important role in terrestrial atmospheric dynamics, thermodynamics, and radiative transfer and are key elements of the water and energy cycles. Modification of cloud properties, lifetime, and amount by indirect aerosol effects has an effect on radiative forcing in the climate. Cloud observations using satellite-borne multispectral imagers (e.g. Aqua/MODIS, GCOM-C/SGLI and EarthCARE/MSI) provide data sets useful for understanding cloud characteristics and their distributions on a global scale. Previous studies, however, pointed out that cloud parameters (e.g. cloud optical thickness, cloud particle effective radius and cloud top temperature) retrieved from multispectral measurements were significantly impacted by vertical and horizontal inhomogeneities of clouds, bimodal particle size distributions in drizzling clouds, and three-dimensional radiative transfer. In this study, we suggest a new method for estimating bias in multi-spectral-retrieved cloud parameters caused by cloud horizontal inhomogeneity. The impact of cloud horizontal inhomogeneity is considered as a key for interpreting discrepancies between cloud parameters from satellite observations and in-situ measurements or numerical cloud models. The estimation method considers the bias as the combination of the following two impacts: One is the impact of clear-contamination in cloud pixel, which is parameterized by cloud-fraction. The other is the impact of subpixel scale variance of cloud properties (but no clear-contamination), which is parameterized by variance of multi-spectral radiances in sub-pixels, and based on error propagation theory. We evaluate the method by using high-spatial resolution measurements of Landsat 8. Additionally, to apply the method to several multi-spectral imagers (e.g. MODIS, GCOM-C/SGLI and EarthCARE/MSI), we also investigate co-variance matrices of adjacent pixels or sub-pixels obtained from different IFOVs because the accuracy of the method depends on the accuracy of the co-variance matrix.