日本地球惑星科学連合2014年大会

講演情報

口頭発表

セッション記号 M (領域外・複数領域) » M-IS ジョイント

[M-IS30_28PM1] 古気候・古海洋変動

2014年4月28日(月) 14:15 〜 16:00 501 (5F)

コンビーナ:*山田 和芳(早稲田大学人間科学学術院)、池原 実(高知大学海洋コア総合研究センター)、入野 智久(北海道大学 大学院地球環境科学研究院)、岡崎 裕典(九州大学大学院理学研究院地球惑星科学部門)、北場 育子(神戸大学内海域環境教育研究センター)、北村 晃寿(静岡大学理学部地球科学教室)、佐野 雅規(総合地球環境学研究所)、多田 隆治(東京大学大学院理学系研究科地球惑星科学専攻)、吉森 正和(東京大学大気海洋研究所)、座長:入野 智久(北海道大学 大学院地球環境科学研究院)

15:00 〜 15:15

[MIS30-13] アジア熱帯域の洞窟における現在の洞外気象と石筍成長の関係

*長谷川 航1渡邊 裕美子1松岡 廣繁1大沢 信二2田上 高広1 (1.京都大学大学院理学研究科地質学鉱物学教室、2.京都大学大学院理学研究科地球物理学教室)

キーワード:cave monitoring, speleothem, isotope, peleo-climate

IntroductionFor precise climate prediction, it is necessary to reconstruct high time and space resolution paleo-climate (especially past 2000 years) from paleo-climate proxies and assimilate the result to climate model. Tropical Asia, including Indonesia, is well affected by El Nino Southern Oscillation (ENSO). The ENSO does not only directly affect on precipitation in tropical Asia, but also indirectly on middle and high latitude climate through teleconnection [1]. In Indonesia, Watanabe et al. [2] suggested inverse-correlation between δ18O and δ13C in speleothems and instrumental precipitation. However, relationship between modern speleothem formation and surface weather is not revealed clearly.Therefore, the cave monitoring program, which included cave air temperature, relative humidity, airflow current, air CO2 concentration monitoring and δ18O and δ13C analysis of dripwater and farmed speleothems, was initiated from 2011 in Petruk Cave (Central Java, Indonesia) in order to study the recording mechanism of precipitation variation into the δ18O and δ13C fluctuation in speleothems. Result and Discussion Air CO2 concentration in Petruk Cave is fluctuated daily and seasonally until over 100 m deep site from the entrance.It is revealed that cave air CO2 concentration may be a significant factor that controls stable isotope value in speleothems, because temperature, humidity and drip rate in Petruk cave are nearly stable. A scenario of precipitation recording is as follows: (1) surface rainfall cools outside air temperature; (2) cave airflow direction is inversed; (3) outside fresh air flows into the cave and air CO2 concentration is dropped; (4) pCO2 difference between cave air and dripwater becomes higher and calcite precipitation is promoted; (5) δ18O and δ13C in dripwaters and speleothems are decreased.In addition to above discussion, we will show you δ18O and δ13C values in dripwaters and farmed speleotems and confirm the scenario by these data.[1] Hastenrath (1991) Climate dynamics of the tropics. [2] Watanabe et al. (2010) Palaeogeography, Palaeoclimatology, Palaeoecology 293, 90?97.