日本地球惑星科学連合2014年大会

講演情報

口頭発表

セッション記号 M (領域外・複数領域) » M-TT 計測技術・研究手法

[M-TT42_2AM2] 地球化学の最前線:先端的手法から探る地球像

2014年5月2日(金) 11:00 〜 12:45 314 (3F)

コンビーナ:*横山 祐典(東京大学 大気海洋研究所 海洋底科学部門/地球表層圏変動研究センター)、鍵 裕之(東京大学大学院理学系研究科附属地殻化学実験施設)、橘 省吾(北海道大学大学院理学研究院自然史科学専攻地球惑星システム科学分野)、平田 岳史(京都大学大学院理学研究科地球惑星科学専攻)、角皆 潤(名古屋大学大学院環境学研究科)、鈴木 勝彦(独立行政法人海洋研究開発機構・地球内部ダイナミクス領域)、下田 玄(産業技術総合研究所地質調査総合センター)、角野 浩史(東京大学大学院理学系研究科附属地殻化学実験施設)、小畑 元(東京大学大気海洋研究所海洋化学部門海洋無機化学分野)、高橋 嘉夫(広島大学大学院理学研究科地球惑星システム学専攻)、横山 哲也(東京工業大学大学院理工学研究科地球惑星科学専攻)、座長:鍵 裕之(東京大学大学院理学系研究科附属地殻化学実験施設)、橘 省吾(北海道大学大学院理学研究院自然史科学専攻地球惑星システム科学分野)、横山 祐典(東京大学 大気海洋研究所 海洋底科学部門/地球表層圏変動研究センター)

11:00 〜 11:15

[MTT42-08] マルチレンジ同位体イメージング技術の開発

*平田 岳史1服部 健太郎1小原 聖也1 (1.京都大学大学院理学研究科地球惑星科学専攻)

キーワード:laser ablation, ICP-mass spectrometry, imaging mass spectrometry, multi-scale imaging, trace-elements, quantitative imaging

Time-resolved elemental and isotopic data can provide key information about the time changes of the geochemical conditions of the surface environmental of the Earth, and therefore, critical restriction for the origin or evolutional sequence of the surface environment of the Earth and the life could be derived. To obtain reliable and exclusive information from the samples, tremendous efforts have been given to develop various analytical techniques, which could provide both the higher elemental sensitivity and higher analytical throughput. Among the analytical techniques, plasma ion source mass spectrometer coupled with the laser ablation sample introduction technique (LA-ICPMS) has now become the most sensitive and user-friendly analytical tool to derive elemental and isotopic distribution among the different phases or minerals. Moreover, in the LA-ICPMS technique, atomization and ionization of the analytes were independently carried out from the sampling (i.e., post ionization technique), and therefore, the sampling and ionization conditions could be separately optimized. The post ionization technique results in the smaller contribution of the matrix effect, which could be the major source of analytical error. Furthermore, for the LA-ICPMS technique, sample was located under the atmospheric pressure sample cell, and laser induced sample aerosols were carried into the ICP ion source using a He carrier gas. This suggests that no evacuation of the sample housing is required, and therefore, biological cell or tissue samples (i.e., wet samples) can be directly subsidized to elemental imaging analysis, obviating the drying or freezing procedure for the analysis. The LA-ICPMS technique has further advantages of imaging analysis for samples with various sizes, ranging from 10 microns to >10 mm. Because of high capability for quantitative imaging of ultratrace-elements, together with high analytical capability to measure large-sized samples, the LA-ICPMS technique has blossomed to become the key analytical technique for the imaging analysis of trace-elementals and isotopes. This is very important to obtain elemental and isotopic images for not only biological samples, but also various rock or minerals. In fact, imaging data for whole rock pierces or minerals can tell us the substantial process for the elemental distribution or diffusion among the samples. We should recall that we could not see the forst for the trees. Despite the obvious success in obtaining the elemental and isotopic imaging data, neither quantitative evaluation of the detection limits for the elements nor the dependence of the analytical conditions (e.g., laser pit size, raster rate, system setup or condition for data acquisition) onto the resulting spatial resolution were made. To investigate these, we have measured imaging analyses of several trace- and ultratrace-elements from meteorite samples and biochemical samples under the various analytical conditions. In this presentation, we will described the effect of the system setup and operational settings onto the resulting spatial resolution and onto the limit of detection for the elements.