日本地球惑星科学連合2014年大会

講演情報

ポスター発表

セッション記号 P (宇宙惑星科学) » P-CG 宇宙惑星科学複合領域・一般

[P-CG38_1PO1] 惑星大気圏・電磁圏

2014年5月1日(木) 18:15 〜 19:30 3階ポスター会場 (3F)

コンビーナ:*今村 剛(宇宙航空研究開発機構 宇宙科学研究本部)、関 華奈子(名古屋大学太陽地球環境研究所)、高橋 幸弘(北海道大学・大学院理学院・宇宙理学専攻)、高橋 芳幸(惑星科学研究センター)、深沢 圭一郎(九州大学情報基盤研究開発センター)、中川 広務(東北大学 大学院理学研究科 地球物理学専攻太陽惑星空間物理学講座 惑星大気物理学分野)

18:15 〜 19:30

[PCG38-P05] IRTF/CSHELL観測による金星O2大気光の時間変動

*大月 祥子1岩上 直幹2Robert Severine3佐川 英夫4神山 徹5佐藤 隆雄6 (1.専修大学、2.東京大学、3.Belgian Institute for Space Aeronomy、4.情報通信研究機構、5.産業技術総合研究所、6.宇宙航空研究開発機構宇宙科学研究所)

Venus 1.27-micron O2 night airglow is the indicator of the general circulation at about 95 km in Venus. Recent observations reported that the airglow emission showed the temporal variations with a period of a few hours and days [e.g. Ohtsuki et al., 2008; Gerard et al., 2008]. Such variations may be caused by the upward momentum transport and fluctuations by atmospheric waves. In recent years, the importance of planetary-scale waves on the general circulation of the Venus atmosphere has been recognized. Forbes and Konopliv [2007] suggested the propagation of planetary-scale waves originated in the cloud deck into the upper atmosphere. However, effects of planetary-scale waves on the Venus upper atmosphere have not been investigated yet.
We conducted 5-days monitoring observation of the airglow to detect the planetary-scale waves with IRTF/CSHELL from 11-15 July 2012, 3 and 5 February 2014. The 1.27-micron O2 night airglow in the Venus atmosphere can pass through the Earth's atmosphere with a help of the Doppler shift. We obtained spectral image cubes at the wavelength of R-branch of the airglow band, which includes several rotational lines. In order to cover spectral information continuously, a slit drifted across Venus' nightside disk. The spatial resolution of the image is governed by seeing. The typical seeing was 0.6" to 1.5" in our observing run and corresponds to 200-450km at the center of Venus' disk. Under such conduction, we may detect airglow structures of small scales due to atmospheric waves; this is smaller than the region of enhanced airglow having a horizontal scale of ~3000km. We can also derive the hemispherical distribution of the rotational temperature. To coincide with our observations, SOIR/Venus Express stellar occultations were conducted. We can try to compare our horizontal temperature map and vertical temperature profile from SOIR data.
In this presentation, we will show temporal variation of the airglow distributions in July 2012 and report a preliminary result of our new observations in February 2014.