日本地球惑星科学連合2014年大会

講演情報

インターナショナルセッション(口頭発表)

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM08_2AM2] Space Weather and Space Climate

2014年5月2日(金) 10:55 〜 12:45 411 (4F)

コンビーナ:*片岡 龍峰(国立極地研究所)、海老原 祐輔(京都大学生存圏研究所)、草野 完也(名古屋大学太陽地球環境研究所)、清水 敏文(宇宙航空研究開発機構宇宙科学研究所)、三好 由純(名古屋大学太陽地球環境研究所)、浅井 歩(京都大学宇宙総合学研究ユニット)、佐藤 達彦(日本原子力研究開発機構)、陣 英克(情報通信研究機構)、伊藤 公紀(横浜国立大学大学院工学研究院)、宮原 ひろ子(武蔵野美術大学造形学部)、座長:陣 英克(情報通信研究機構)

10:55 〜 11:15

[PEM08-15] Ensemble Data Assimilation for Thermospheric Mass Density Specification and Forecasting

*MATSUO Tomoko1LEE Ite2ANDERSON Jeffrey3 (1.University of Colorado at Boulder, CO, USA、2.National Central University, Taiwan、3.National Center for Atmospheric Research, CO, USA)

キーワード:thermosphere-ionosphere coupling, data assimilation, parameter and state estimation, thermospheric mass density, aerodynamic drag estimation, LEO orbit prediction

Even though the Earth's upper atmosphere density is tenuous, it is substantial enough to exert significant drag on orbiting spacecraft and debris. The largest uncertainty in low-Earth orbit prediction is aerodynamic drag estimation. Thermospheric mass density variation is the major source of drag estimation errors at altitudes below about 700 km. This paper demonstrates how the limit of predictability of thermospheric mass density variability can be extended by means of ensemble data assimilation. To assimilate observations of the thermosphere and ionosphere, we use an ensemble data assimilation procedure constructed with the Data Assimilation Research Testbed and the Thermoshere-Ionosphere Electrodynamics General Circulation Model, two sets of community software offered by NCAR. An important attribute of our approach is that the ionosphere-thermosphere coupling is self-consistently treated in both the forecast model and the assimilation scheme. This enables the inference of unobserved thermospheric states from the relatively plentiful observations of the ionosphere. Given the ever-expanding global navigation satellite infrastructure, this is indeed a promising prospect for upper atmosphere data assimilation. Another relevant strategy is using data assimilation to estimate the model forcing parameters that control states of the thermosphere and ionosphere. In comparison to the lower atmosphere, the upper atmosphere is a dissipative, strongly forced dynamical system, so estimation of model forcing parameters can have a dramatic impact on the quality of ensemble forecasting and assimilation of the upper atmosphere. In this paper, we present results from our ensemble assimilation experiments with thermospheric mass densities obtained from the accelerometer on board the CHAMP satellite, and electron density profiles obtained from the COSMIC/FORMOSAT-3 mission.