日本地球惑星科学連合2014年大会

講演情報

インターナショナルセッション(口頭発表)

セッション記号 S (固体地球科学) » S-IT 地球内部科学・地球惑星テクトニクス

[S-IT03_29AM2] Structure and dynamics of Earth and Planetary deep interiors

2014年4月29日(火) 11:00 〜 12:45 418 (4F)

コンビーナ:*田中 聡(海洋研究開発機構 地球内部ダイナミクス領域)、芳野 極(岡山大学地球物質科学研究センター)、亀山 真典(国立大学法人愛媛大学地球深部ダイナミクス研究センター)、趙 大鵬(東北大学大学院理学研究科附属地震・噴火予知研究観測センター)、ヘルンランド ジョン(東京工業大学 地球生命研究所)、座長:亀山 真典(国立大学法人愛媛大学地球深部ダイナミクス研究センター)、竹内 希(東京大学地震研究所)

12:00 〜 12:15

[SIT03-12] 660-km不連続面を貫通するスラブ内の極深発地震(h>660km)のメカニズム

*深尾 良夫1大林 政行1吉光 順子1 (1.海洋研究開発機構)

キーワード:マントルダイナミクス, トモグラフィー, 深発地震

Recent mantle tomography has begun to reveal the characteristic differences between the deep hypocentral distributions associated with stagnant slabs and those associated with penetrating slabs (e.g., Fukao and Obayashi, 2014). We here show that there are differences in focal mechanism as well. Mechanisms of deep shocks within tomographically imaged stagnant slabs (typically in Bonin and Tonga) are characterized by horizontal compression (e.g., Bonnardot et al., 2009). Those within tomographically imaged penetrating slabs (typically in Java and Tonga) are characterized by very steeply dipping compressional axes (e.g., Alpert et al., 2010). The deepest seismicity is especially active in Tonga, where many shocks occur at depths greater than 660km. Such ultra-deep shocks show in general very unusual mechanisms, typified by nearly vertical tensional axes with a large amount of CLVD component, as demonstrated in Figure 1 (Mechanisms viewd from the side).This figure also shows a remarkble contrast of mechanisms of deepest shocks just above and below the 660km depth. The source region of these ultra-deep shocks (h>660km) is underlain by the greatly deepened post-spinel phase boundary (Niu and Kawakatsu, 1995) so that the source region is at the pre-spinel state while the underlying portion is at the post-spinel state. This situation along with contortion of the slab associated with its interaction with the post-spinel phase boundary (e.g., Cizkova and Bina, 2013) may explain the mechanism change across the 660km depth as observed in Figure 1. We explore the finer velocity structure and hypocentral distribution in the source region by a technique of differential travel time tomography.