日本地球惑星科学連合2014年大会

講演情報

口頭発表

セッション記号 S (固体地球科学) » S-IT 地球内部科学・地球惑星テクトニクス

[S-IT40_1AM2] 地殻流体:その分布と変動現象への役割

2014年5月1日(木) 11:00 〜 12:35 416 (4F)

コンビーナ:*中村 美千彦(東北大学大学院理学研究科地学専攻地球惑星物質科学講座)、佐久間 博(東京工業大学大学院理工学研究科地球惑星科学専攻)、市來 雅啓(東北大学大学院理学研究科)、高橋 努(独立行政法人海洋研究開発機構 地球内部ダイナミクス領域)、座長:中村 美千彦(東北大学大学院理学研究科地学専攻地球惑星物質科学講座)、宇野 正起(東北大学大学院環境科学研究科)

11:30 〜 11:45

[SIT40-09] 下部ー中部地殻条件下における元素輸送:三波川帯,塩基性片岩の吸水反応の例

*宇野 正起1中村 仁美2岩森 光3 (1.東北大学大学院環境科学研究科、2.東京工業大学大学院地球惑星科学専攻、3.海洋研究開発機構・地球内部物質循環研究分野)

キーワード:地殻流体, 変成作用, 微量元素, Sr-Nd-Pb同位体, 吸水反応, 三波川変成帯

To constrain the behavior of geofluids under the lower to middle crustal conditions, hydration reactions and trace element and Sr-Nd-Pb isotopic compositions of basic schists in the Cretaceous Sanbagawa metamorphic belt, a typical regional metamorphic belt in the circum-Pacific orogeny, have been investigated based on the observations of thin-sections and outcrops. The basic schists have undergone significant hydration from 0.8 GPa, 550 oC to 0.3 GPa, 400 oC during decompression towards the surface at the final stage of metamorphism. High-field-strength and rare-earth element compositions of the basic schists, as well as the Sr-Nd-Pb isotopic ratios, are different among three mineral zones with different peak P-T metamorphic conditions; the basic schists in the low-grade chlorite zone shows N-MORB-like compositions whereas those in the higher-grades, garnet and oligoclase-biotite zones, show more enriched compositions (E-MORB-like). On the other hand, there is a common feature to all the metamorphic zones; the enrichment degree of some group of elements (e.g., large-ion lithophile elements) relative to high-field-strength and heavy-rare-earth elements is proportional to loss on ignition that approximately measures the bulk rock H2O content. This correlation suggests that Li, B, K, Cr, Ni, Rb, Sr, Cs and Ba have been added to the basic schists during hydration. The addition of these elements amounts to as much as 60-80% of the bulk abundance, indicating that significant amounts of elements were transported via pervasive fluid flow, which overprinted the variation in the bulk rock compositions of the protolith. The estimated compositions of hydration fluid show high concentrations in large-ion lithophile elements, lead and light-rare-earth elements (10-100 times denser than primitive mantle, Fig. 1) and are similar to those of the slab-derived fluids[1] that induce arc volcanism. These elements (Cs, Rb, Ba, K, La, Ce and Pb) are thought to have been preferentially partitioned into the fluid when it was generated at depth. Such high concentrations indicate a high temperature origin of the hydration fluid, and are consistent with a model of hot slab subduction during exhumation of the Sanbagawa belt.References:[1] Nakamura, H., Iwamori, H., and Kimura, J.-I., 2008 Nat. Geosci., 1, 380-384