日本地球惑星科学連合2014年大会

講演情報

口頭発表

セッション記号 S (固体地球科学) » S-MP 岩石学・鉱物学

[S-MP47_1AM1] 鉱物の物理化学

2014年5月1日(木) 09:00 〜 10:45 422 (4F)

コンビーナ:*奥寺 浩樹(金沢大学理工学域自然システム学系)、興野 純(筑波大学大学院生命環境科学研究科地球進化科学専攻)、座長:鎌田 誠司(東北大学大学院理学研究科)、興野 純(筑波大学大学院生命環境科学研究科地球進化科学専攻)

10:15 〜 10:30

[SMP47-06] 合成Ca輝石におけるFe3+, Al, Ga分布の温度依存性と局所構造

*赤坂 正秀1濵田 麻希2永嶌 真理子3江島 輝美4 (1.島根大学総合理工学研究科、2.金沢大学理工研究域、3.山口大学理工学研究科、4.産業技術総合研究所)

キーワード:単斜輝石, メスバウアー, X線結晶構造解析, 結晶化学, イオン分布, 温度依存性

Distribution of Fe3+, Al3+ and Ga3+ among octahedral and tetrahedral sites in synthetic esseneite (CaFeAlSiO6)- and (CaFe3+GaSiO6)90(CaGa2SiO6)10-clinopyroxenes at 800 and 1200 ℃ were investigated using 57Fe Mössbauer and X-ray Rietveld methods to find a relation between site occupancies of trivalent cations at the octahedral and tetrahedral sites and ionic sizes of trivalent cations. The esseneite was synthesized from oxide mixture using sintering technique at 1200 ℃ in air. The FeGaTs90GaTs10-Cpx was crystallized from glass starting material at 1200 ℃ in air. The Cpxs synthesized and those annealed at 800 ℃ were analyzed using 57Fe Mössbauer spectroscopic and X-ray Rietveld methods. In the synthetic esseneite, VIFe3+:IVFe3+-ratio at 800 ℃ was determined as 82(1):18(1) by Mössbauer method and 78.2(5):21.8(5) by Rietveld method, whereas, at 1200 ℃, 79(1):21(1) by Mössbauer method and 77(1):23(1) by Rietveld analysis. The resulting Fe3+ populations at octahedral M1 and tetrahedral T sites in the synthetic esseneite are Fe3+0.782(5)-0.82(1) apfu and 0.218(5)-0.18(1) apfu, respectively. In the synthetic Fe3+-Ga-Cpx, VIFe3+:IVFe3+-ratio at 800 ℃ was 74(3):26(2) (Mössbauer analysis data) and 78(1):22(1) (Rietveld analysis data), while, at 1200 ℃, 71(3):29(1) (Mössbauer analysis data) and 67(1):33(1) (Rietveld analysis), which results in populations at the octahedral M1 and tetrahedral T sites of [Fe3+0.67(1)-0.70(1)Ga0.33-0.30]M1[Si1.0Fe3+0.23-0.20Ga0.77-0.80]T (O = 6) at 800 ℃, and [Fe3+0.64(1)-0.60(1)Ga0.36-0.40]M1[Si1.0Fe3+0.26-0.30Ga0.74-0.70]T at 1200 ℃. This result indicates the temperature dependence of Fe3+, Al3+ and Ga3+ distributions between M1 and T sites. However, it is evident that, even at different temperatures, distributions of Fe3+, Al3+ and Ga3+ between M1 and T sites are well correlated with the ratio of ionic radius of larger Fe3+-cation against smaller Al3+ and Ga3+, as Akasaka et al. (1997) indicated. Another finding in this study is the splitting of a 57Fe Mössbauer doublet by Fe3+ at M1 site into two doublets. This indicates existence of short-range domain structure by two kinds of M1 sites with slightly different distortions, which cannot be detected by X-ray diffraction.