日本地球惑星科学連合2015年大会

講演情報

インターナショナルセッション(口頭発表)

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM07] Space Weather, Space Climate, and VarSITI

2015年5月25日(月) 14:15 〜 16:00 302 (3F)

コンビーナ:*片岡 龍峰(国立極地研究所)、海老原 祐輔(京都大学生存圏研究所)、三好 由純(名古屋大学太陽地球環境研究所)、清水 敏文(宇宙航空研究開発機構宇宙科学研究所)、浅井 歩(京都大学宇宙総合学研究ユニット)、陣 英克(情報通信研究機構)、佐藤 達彦(日本原子力研究開発機構)、草野 完也(名古屋大学太陽地球環境研究所)、宮原 ひろ子(武蔵野美術大学造形学部)、中村 卓司(国立極地研究所)、塩川 和夫(名古屋大学太陽地球環境研究所)、伊藤 公紀(横浜国立大学大学院工学研究院)、座長:片岡 龍峰(国立極地研究所)

15:15 〜 15:30

[PEM07-23] 電波観測における白色光太陽フレアの特徴

*増田 智1北川 潤1渡邉 恭子2 (1.名古屋大学太陽地球環境研究所、2.宇宙航空研究開発機構宇宙科学研究所)

White-light flare is a solar flare in which an enhancement in white-light continuum is detected. Although most of white-light flares are large flares in energy like GOES X-class flare, it is not correct that only the amount of released energy determine if a solar flare becomes a white-light flare. To understand what generates a white-light flare, we analyzed 42 M- and X-class flares observed with Hinode/SOT during the period from January 2011 to August 2013. Among these 42 events, the number of white-light flares was 19. Comparing the white-light and no white-light events, we concluded that the key factor to generate white-light enhancement is the precipitation of large amount of nonthermal electrons within a short time duration into a compact region (Kitagawa et al., submitted to ApJ).
In this paper, we analyzed the 10 events (white-light: 4 events, no white-light: 6 events) among the 42 events, which were observed with Nobeyama Radio Heliograph (NoRH) and Nobeyama Radio Polarimeters (NoRP). GHz microwave are emitted by gyrosynchrotron from very-high energy (~MeV) accelerated electrons. The peak intensity in 17 and 35 GHz does not show any significant difference between the white-light and no white-light events. This indicates that such high-energy electrons does not contribute white-light enhancement. The spectrum of gyrosynchrotron emission usually has a peak frequency which corresponds to the turning point (turn-over frequency) between the optical thick part in the lower frequency range and the optically thin part in higher frequency range. The white-light flares show systematically high turn-over frequency than that of the no white-light events. The higher turn-over frequency might correspond to stronger magnetic field. This is consistent that white-light flares tend to be compact. As for the time evolution of the spectrum, the no white-light flares tend to show the spectral hardening. This indicates that the magnetic mirror effectively works in no white-light flares because of the weak magnetic field in the flare loop.