日本地球惑星科学連合2015年大会

講演情報

ポスター発表

セッション記号 S (固体地球科学) » S-CG 固体地球科学複合領域・一般

[S-CG57] 変動帯の構造・進化とダイナミクス

2015年5月27日(水) 18:15 〜 19:30 コンベンションホール (2F)

コンビーナ:*竹下 徹(北海道大学大学院理学院自然史科学専攻)、佐藤 比呂志(東京大学地震研究所地震予知研究センター)、尾鼻 浩一郎(海洋研究開発機構 地震津波海域観測研究開発センター)、西村 卓也(京都大学防災研究所)、深畑 幸俊(京都大学防災研究所)、加藤 愛太郎(名古屋大学大学院環境学研究科)、武藤 潤(東北大学大学院理学研究科地学専攻)、佐藤 活志(京都大学大学院理学研究科地球惑星科学専攻)、小平 秀一(海洋研究開発機構 地球内部ダイナミクス領域)、鷺谷 威(名古屋大学減災連携研究センター)、石山 達也(東京大学地震研究所)、松原 誠(防災科学技術研究所)、池田 安隆(東京大学大学院理学系研究科地球惑星科学専攻)

18:15 〜 19:30

[SCG57-P06] 封圧下での含水花崗岩の弾性波速度と電気伝導度の同時測定

*牧村 美穂1渡辺 了1 (1.富山大学大学院理工学教育部)

キーワード:地震波速度, 電気伝導度, 比抵抗, 流体, クラック

Geophysical mapping of fluids is critical for understanding crustal processes. Seismic velocity and electrical resistivity structures have been revealed to study the fluid distribution. However, the fluid distribution has been still poorly constrained. Observed velocity and resistivity should be combined to make a quantitative inference on fluid distribution. The combined interpretation requires a thorough understanding of velocity and resistivity in fluid-saturated rocks. We have studied elastic wave velocities and electrical conductivity in a brine-saturated granitic rock under confining pressures.
A fine grained (100-500 ?m) biotite granite (Aji, Kagawa Pref., Japan) was selected as a rock sample for its small grain size and textural uniformity. Cylindrical samples (D=26 mm, L=30 mm) were heated to 100-600oC to increase the amount of crack (open grain boundary), and filled with 0.1 M KCl aqueous solution. A linear relationship was found between the highest temperature and the crack density parameter, which was estimated from velocities measured at atmospheric pressure. Velocity and electrical conductivity were simultaneously measured by using a 200 MPa hydrostatic pressure vessel. The pore-fluid was electrically insulated from the metal work by using plastic devices. The confining pressure was progressively increased up to 150 MPa, while the pore-fluid pressure was kept at 0.1 MPa. It took 3 days or longer for the electrical conductivity to become stationary after increasing the confining pressure.
Velocity and conductivity showed reproducibly contrasting changes with increasing confining pressure. Elastic wave velocities increased by less than 10% as the confining pressure increased from 0.1 MPa to 50 MPa, while electrical conductivity decreased by an order of magnitude. The changes were caused by the closure of cracks under pressure. The steep decrease in conductivity at low pressures suggests that there are more cracks with smaller aspect ratios. Both velocity and conductivity showed no remarkable changes at higher pressures. An empirical relationship between the normalized conductivity and crack density parameter was obtained. This relationship might be applied to a combined interpretation of seismic velocities and electrical resistivity.