日本地球惑星科学連合2015年大会

講演情報

口頭発表

セッション記号 S (固体地球科学) » S-IT 地球内部科学・地球惑星テクトニクス

[S-IT35] 地球深部ダイナミクス:プレート・マントル・核の相互作用

2015年5月26日(火) 14:15 〜 16:00 106 (1F)

コンビーナ:*中川 貴司(海洋研究開発機構数理科学・先端技術研究分野)、綿田 辰吾(東京大学地震研究所海半球観測研究センター)、境 毅(愛媛大学地球深部ダイナミクス研究センター)、座長:大滝 壽樹(産業技術総合研究所地質情報研究部門)、土屋 卓久(愛媛大学地球深部ダイナミクス研究センター)

14:15 〜 14:30

[SIT35-01] Hcp鉄の高温高圧弾性特性

*土屋 卓久1桑山 靖弘1大角 正直1 (1.愛媛大学)

キーワード:第一原理計算法, Hcp鉄, 弾性特性, 地球内核

Earth's inner core (329~364 GPa and 5000~6000 K) is known to be composed of hexagonal closed pack (hcp) structured solid Fe-Ni alloy and seismologically anisotropic. Thermoelasticity of hcp (ε) iron is therefore a key to interpreting seismological information of the inner core. Since experimental measurements are still technically impractical, theoretical approaches in particular ab initio density functional computation have substantial roles. There are two different ways to simulate high-P,T elastic constants (cij) of crystals. One is based on the lattice dynamics method + quasiharmonic approximation (Sha and Cohen, 2010a,b) and the other is based on the molecular dynamics method (Vocadlo et al., 2009; Martorell et al., 2013). The former and the latter basically fail to capture higher-order anharmonicity and low-temperature quantum effects, which would be substantial and marginal in subsolidus condition, respectively. Due to these problems, distinct differences can be seen in high-P,T cij and their temperature dependences calculated by these different approaches. In this study, we performed ab initio molecular dynamics simulations employing a supercell containing 96 Fe, which is 50% larger than in the previous study with 64 atoms (Vocadlo et al., 2009; Martorell et al., 2013), to check the previous results. Technical details for computing high-P,T cij are basically the same as in our previous studies (Ichikawa et al., 2014; Kawai and Tsuchiya, 2015). We will present temperature dependences of elastic wave velocities and their anisotropies at the Earth's inner core pressures over 300 GPa.

Kawai and Tsuchiya, Geophys. Res. Lett. (2015) under review; Ichikawa et al., J. Geophys. Res., 119, 240 (2014); Martorell et al., Science 342, 466 (2013); Sha and Cohen, Phys. Rev. B 81, 094105 (2010a); Sha and Cohen, Geophys. Res. Lett. 37, L10302 (2010b); Vocadlo et al., Earth Planet. Sci. Lett. 288, 534 (2009)