日本地球惑星科学連合2015年大会

講演情報

ポスター発表

セッション記号 P (宇宙惑星科学) » P-PS 惑星科学

[P-PS23] 月の科学と探査

2015年5月25日(月) 18:15 〜 19:30 コンベンションホール (2F)

コンビーナ:*長岡 央(早稲田大学先進理工学部)、諸田 智克(名古屋大学大学院環境学研究科)、Masaki N Nishino(Solar-Terrestrial Environment Laboratory, Nagoya University)、本田 親寿(会津大学)、長 勇一郎(立教大学理学部)

18:15 〜 19:30

[PPS23-P12] SELENE-2/月電磁探査装置 (LEMS): インバージョンのテスト (2)

*松島 政貴1清水 久芳2藤 浩明3吉村 令慧4高橋 太5綱川 秀夫1渋谷 秀敏6松岡 彩子7小田 啓邦8小川 和律9田中 智7 (1.東京工業大学、2.東京大学地震研究所、3.京都大学、4.京都大学防災研究所、5.九州大学、6.熊本大学、7.宇宙航空研究開発機構宇宙研究所、8.産業技術総合研究所、9.東京大学)

キーワード:電磁探査, 月内部構造, SELENE-2

The so-called giant impact hypothesis is likely to explain the origin of the Moon in view of physical and chemical evidence such as angular momentum, materials possibly through magma ocean processes, and compositional similarity of the Earth and the Moon. Numerical simulations of such a giant impact indicate that most of the Moon-forming material around the proto-Earth originates from the projectile. This means that such a standard giant impact is difficult to form the Moon whose isotopic composition is essentially identical to the Earth's as found from the lunar samples in the Apollo mission. This would be a reason why new giant-impact models are devised. It should be noted that the lunar samples were obtained only from the lunar surface, and that information on bulk composition and interior structure of the Moon is still insufficient. Therefore it is of significance to obtain information regarding the whole lunar composition and interior structure, which can advance our understanding of lunar origin and evolution.

In the SELENE-2 mission, we propose a lunar electromagnetic sounder (LEMS) to estimate the electrical conductivity structure of the Moon. The electrical conductivity varies with temperature even for the same composition, and therefore it can be used to deduce the present thermal structure of the Moon.

Temporal variations in the magnetic field of lunar external origin, which can be observed by magnetometers onboard a lunar orbiter and a lunar lander, induce eddy currents in the lunar interior depending on the electrical conductivity distribution and frequencies of the temporal variations. The eddy currents, in turn, generate temporal variations in the magnetic field of lunar internal origin, which can be observed by a magnetometer onboard a lunar lander. Thus electromagnetic response of the Moon is obtained by magnetic field measurements. Then the electromagnetic response function is used to estimate the electrical conductivity structure by solving an inverse problem. We show results for some tests of inversion, assuming a one-dimensional interior structure for electrical conductivity distribution.