日本地球惑星科学連合2015年大会

講演情報

ポスター発表

セッション記号 S (固体地球科学) » S-CG 固体地球科学複合領域・一般

[S-CG57] 変動帯の構造・進化とダイナミクス

2015年5月27日(水) 18:15 〜 19:30 コンベンションホール (2F)

コンビーナ:*竹下 徹(北海道大学大学院理学院自然史科学専攻)、佐藤 比呂志(東京大学地震研究所地震予知研究センター)、尾鼻 浩一郎(海洋研究開発機構 地震津波海域観測研究開発センター)、西村 卓也(京都大学防災研究所)、深畑 幸俊(京都大学防災研究所)、加藤 愛太郎(名古屋大学大学院環境学研究科)、武藤 潤(東北大学大学院理学研究科地学専攻)、佐藤 活志(京都大学大学院理学研究科地球惑星科学専攻)、小平 秀一(海洋研究開発機構 地球内部ダイナミクス領域)、鷺谷 威(名古屋大学減災連携研究センター)、石山 達也(東京大学地震研究所)、松原 誠(防災科学技術研究所)、池田 安隆(東京大学大学院理学系研究科地球惑星科学専攻)

18:15 〜 19:30

[SCG57-P11] 曹灰長石ナノ多結晶体の焼結と粒成長

*本多 聡子1石川 正弘1 (1.横浜国立大学 環境情報研究院・学府)

Plagioclase is a solid solution series that ranges from albite to anorthite endmembers (with respective compositions NaAlSi3O8 to CaAl2Si2O8). Plagioclase is a major constituent mineral in the Earth's crust. Its physical and chemical properties are important for establishing the overall rheology of Earth's crust. Previous experimental studies on sintering on plagioclase were mostly concentrated on the endmembers under the high-pressure conditions, thus there are few reports on sintering of plagioclase with intermediate composition.
In this study, sintering of labradorite polycrystalline were performed by using nanoscale powders of natural labradorite, and grain growth kinetics was studied in sintered polycrystalline labradorite. We prepared nanoscale mineral powders from natural crystals of labradorite (Ab38An62) by milling. Sintering experiments were carried out at a temperature of 1100-1210 ℃ with controlling time after milling and formed mineral powders. Starting materials were characterized by electron probe micro analysis (EPMA). The resultant materials were characterized by X-ray powder diffraction (XRD), secondary electron microscope (SEM) and Xray fluorescence (XRF) analysis.
Grain growth occurred with increasing sintering temperature or sintering time. The experimental data can be fit the following relation, Dfn-D0n = kt where n is a constant, Df and D0 are the grain size at time t = t and t = 0 respectively, and k is a rate constant. For sintering, a temperature of 1100-1210 ℃ with controlled time can provide high dense aggregates of labradorite with an average grain size of 0.5micro m, porosity of 3vol% and volume reduction of 60%. In this study, we found that high dense and fine grain polycrystalline Labradorite can be made from nano-sized powders (<100nm) by atmospheric pressure sintering.