日本地球惑星科学連合2015年大会

講演情報

口頭発表

セッション記号 S (固体地球科学) » S-CG 固体地球科学複合領域・一般

[S-CG57] 変動帯の構造・進化とダイナミクス

2015年5月28日(木) 09:00 〜 10:45 国際会議室 (2F)

コンビーナ:*竹下 徹(北海道大学大学院理学院自然史科学専攻)、佐藤 比呂志(東京大学地震研究所地震予知研究センター)、尾鼻 浩一郎(海洋研究開発機構 地震津波海域観測研究開発センター)、西村 卓也(京都大学防災研究所)、深畑 幸俊(京都大学防災研究所)、加藤 愛太郎(名古屋大学大学院環境学研究科)、武藤 潤(東北大学大学院理学研究科地学専攻)、佐藤 活志(京都大学大学院理学研究科地球惑星科学専攻)、小平 秀一(海洋研究開発機構 地球内部ダイナミクス領域)、鷺谷 威(名古屋大学減災連携研究センター)、石山 達也(東京大学地震研究所)、松原 誠(防災科学技術研究所)、池田 安隆(東京大学大学院理学系研究科地球惑星科学専攻)、座長:山崎 雅(産業技術総合研究所)

09:00 〜 09:15

[SCG57-10] 地震波速度および比抵抗からの流体分布の推定

*渡辺 了1牧村 美穂1 (1.富山大学大学院理工学研究部)

キーワード:地震波速度, 比抵抗, 流体

Geophysical mapping of fluids in the crust is critical for understanding crustal dynamics. Pore-fluids play important roles in geodynamic processes including seismic activities. Though a lot of studies have suggested the existence of aqueous fluids in the crust, the fluid distribution has not been quantitatively constrained. Seismic velocity and resistivity should be combined to make a quantitative inference on fluid distribution. It is impossible to infer the amount of fluid only from seismic velocity. Since the lithology of a study region is usually unknown, elastic properties of the rock matrix must be assumed. The fluid amount cannot be inferred only from electrical resistivity, either. The inference of the fluid amount requires the assumption on the fluid resistivity. The fluid amount estimated from resistivity must be identical to that estimated from seismic velocity. The combination of velocity and resistivity can thus constrain the rock matrix and fluid conductivity.
We propose a new method for estimating the amount of fluid from seismic velocity and resistivity. It utilizes an empirical relationship between the normalized resistivity and crack density parameter, which was obtained from measurements of elastic wave velocity and electrical conductivity in a brine-saturated granitic rock under confining pressures (Makimura and Watanabe, Poster session). Resistivity is normalized by the fluid resistivity. If we assume a lithology for the study region, we can estimate the crack density parameter from observed velocity. Using the empirical relation, we can obtain the normalized resistivity. Comparing the normalized resistivity with observed resistivity, we can obtain the fluid resistivity. If the fluid resistivity is an unrealistic value, we must modify the assumed lithology. Both the lithology and fluid resistivity can be constrained through these procedures.
The applicability and limitation of the empirical relation should be studied both experimentally and theoretically. In experimental studies, the relation should be studied in different rock types. A theoretical work on the network of grain boundary cracks will give us a basis of the relation.