日本地球惑星科学連合2015年大会

講演情報

インターナショナルセッション(口頭発表)

セッション記号 A (大気水圏科学) » A-CG 大気水圏科学複合領域・一般

[A-CG09] Satellite Earth Environment Observation

2015年5月28日(木) 14:15 〜 16:00 301B (3F)

コンビーナ:*沖 理子(宇宙航空研究開発機構)、早坂 忠裕(東北大学大学院理学研究科)、佐藤 薫(東京大学 大学院理学系研究科 地球惑星科学専攻)、佐藤 正樹(東京大学大気海洋研究所)、高橋 暢宏(独立行政法人 情報通信研究機構)、本多 嘉明(千葉大学環境リモートセンシング研究センター)、奈佐原 顕郎(筑波大学生命環境系)、中島 孝(東海大学情報理工学部情報科学科)、沖 大幹(東京大学生産技術研究所)、横田 達也(独立行政法人国立環境研究所)、高薮 縁(東京大学 大気海洋研究所)、村上 浩(宇宙航空研究開発機構地球観測研究センター)、岡本 創(九州大学)、座長:村上 浩(宇宙航空研究開発機構地球観測研究センター)

15:45 〜 16:00

[ACG09-31] On the optimal design for a global high-resolution surface CO_{2} flux inversion model

*Shamil MAKSYUTOV1Tomohiro ODA2Rajesh JANARDANAN1Alexey YAREMCHUK3Johannes W. KAISER4Akihiko ITO1Dmitry BELIKOV5Ruslan ZHURAVLEV6Alexander GANSHIN6Vinu VALSALA7 (1.NIES, Tsukuba, Japan、2.USRA/GSFC, MD, USA、3.N. Andreev Acoustics Inst., Moscow, Russia、4.MPI for Chemistry, Mainz, Germany、5.NIPR, Tokyo and NIES, Tsukuba, Japan、6.Central Aerological Observatory, Dolgoprudny, Russia、7.Indian Institute for Tropical Meteorology, Pune, India)

キーワード:remote sensing, carbon dioxide, data assimilation, inverse modeling

We devised an iterative inversion framework that is optimally designed for estimating surface CO2 fluxes at a high spatial resolution using a Lagrangian-Eulerian coupled tracer transport model and atmospheric CO2 data collected by the global reference in-situ network and satellite observations. In our inverse system, the Lagrangian particle dispersion model FLEXPART was coupled to the Eulerian atmospheric tracer transport model (NIES-TM) and an adjoint of the coupled model was derived. Weekly corrections to given prior fluxes are calculated at a spatial resolution of the meteorology driver of FLEXPART (0.1 degrees) via iterative optimization. The hourly terrestrial biosphere fluxes are simulated with the VISIT model using the CFSR reanalysis. Ocean fluxes are calculated using a 4D-Var assimilation system based on the surface pCO2 observations. Fossil fuel (ODIAC) and biomass burning (GFAS v1.1) emissions are given at original model resolutions (0.1 degree), while terrestrial biosphere and ocean fluxes are interpolated from a coarser resolution. Flux response functions (footprints) for observations are first simulated with FLEXPART. The precalculated flux response functions are used in forward and adjoint runs of the coupled transport model. We apply Lanczos process to obtain truncated singular value decomposition of the scaled tracer transport operator. The square root of covariance matrix for surface fluxes is constructed by implementing two algorithms. The first algorithm uses a lookup table to store precalculated covariance matrix elements implemented as Gaussian function of a great circle distance between grid points. This algorithm appears to produce highly accurate results but it is becoming computationally expensive when implemented at a high spatial resolution. The second (faster) algorithm, which is based on an implicit diffusion operator with a directional splitting in latitude, longitude and time, was also tested. The covariance operator of the second algorithm approximates Matear function rather than Gaussian, the analysis of its singular value spectra and the singular vectors however shows that the resulting covariance matrix has very similar properties to Gaussian covariance matrix. In our method, the prior and posterior flux uncertainties are evaluated using singular vectors of scaled tracer transport operator. The weekly flux uncertainties at a resolution of 0.1 degree and flux uncertainty reduction due to assimilating single shot GOSAT XCO2 data were estimated for a period of one year. We demonstrated that our application of a coupled tracer transport model in adjoint-based assimilation system provides an efficient way to increase spatial resolution of the inverse model.