Japan Geoscience Union Meeting 2015

Presentation information

International Session (Oral)

Symbol P (Space and Planetary Sciences) » P-EM Solar-Terrestrial Sciences, Space Electromagnetism & Space Environment

[P-EM07] Space Weather, Space Climate, and VarSITI

Mon. May 25, 2015 4:15 PM - 6:00 PM 302 (3F)

Convener:*Ryuho Kataoka(National Institute of Polar Research), Yusuke Ebihara(Research Institute for Sustainable Humanosphere, Kyoto University), Yoshizumi Miyoshi(Solar-Terrestrial Environement Laboratory, Nagoya University), Toshifumi Shimizu(Institute of Space and Astronautical Science, JAXA), Ayumi Asai(Unit for Synergetic Studies of Space, Kyoto University), Hidekatsu Jin(National Institude of Information and Communications Technology), Tatsuhiko Sato(Japan Atomic Energy Agency), Kanya Kusano(Solar-Terrestrial Environment Laboratory, Nagoya University), Hiroko Miyahara(College of Art and Design, Musashino Art University), Takuji Nakamura(National Institute of Polar Research), Kazuo Shiokawa(Solar-Terrestrial Environment Laboratory, Nagoya University), Kiminori Itoh(Graduate School of Engineering, Yokohama National University), Chair:Yusuke Ebihara(Research Institute for Sustainable Humanosphere, Kyoto University)

4:45 PM - 5:00 PM

[PEM07-27] Radiation dose of aircrews during solar proton events

*Ryuho KATAOKA1, Tatsuhiko SATO2 (1.National Institute of Polar Research, 2.Japan Atomic Energy Agency)

Keywords:solar proton events, radiation dose

A significant enhancement of radiation doses is expected for aircrews during ground-level enhancement (GLE) events, while the possible radiation hazard remains an open question during non-GLE solar energetic particle (SEP) events. Using a new air-shower simulation driven by the proton flux data obtained from GOES satellites, we show the possibility of significant enhancement of the effective dose rate of up to 4.5 uSv/h at a conventional flight altitude of 12 km during the largest SEP event that did not cause a GLE. As a result, a new GOES-driven model is proposed to give an estimate of the contribution from the isotropic component of the radiation dose in the stratosphere during non-GLE SEP events. We show further development of our radiation dose model with some applications, including the most recent GLE 72 occurred on 16 Jan 2014.