日本地球惑星科学連合2015年大会

講演情報

インターナショナルセッション(口頭発表)

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM10] Study of coupling processes in solar-terrestrial system

2015年5月27日(水) 16:15 〜 18:00 A01 (アパホテル&リゾート 東京ベイ幕張)

コンビーナ:*山本 衛(京都大学生存圏研究所)、野澤 悟徳(名古屋大学太陽地球環境研究所)、小川 泰信(国立極地研究所)、橋口 浩之(京都大学生存圏研究所)、吉川 顕正(九州大学大学院理学研究院地球惑星科学部門)、座長:野澤 悟徳(名古屋大学太陽地球環境研究所)

17:00 〜 17:15

[PEM10-03] 赤道MUレーダーの観測角度範囲拡大のためのアンテナ配置に関する研究

*橋口 浩之1寺田 凜太郎1西村 耕司2佐藤 亨3山本 衛1 (1.京都大学生存圏研究所、2.国立極地研究所、3.京都大学情報学研究科)

キーワード:赤道MUレーダー, アンテナ配置, グレーティングローブ

Cumulonimbus convection is active in the equatorial atmosphere. It generates various atmospheric waves that propagate upward to transport energy and momentum into the upper atmosphere including the ionosphere. The Equatorial Atmosphere Radar (EAR) has been operated in Kototabang, West Sumatra in Indonesia (0.20S, 100.32E) since 2001. The EAR has a circular antenna array of approximately 110 m in diameter, consisting of 560 three-element Yagis. However its peak power is only 100 kW, which is 1/10 of the MU radar in Shigaraki, Japan. It is proposed to construct the Equatorial MU radar (EMU) which has the similar function and performance as the MU Radar. The antenna of EMU consists of 55 groups, and each group consists of 19 three-element crossed Yagi antennas. Its peak output power is 500 kW in total.
We investigate the optimum antenna arrangement of EMU. Antenna arrangement of the MU Radar and EAR, triangular arrangement, has a problem of generating a grating lobe when the beam zenith angle is over 40 degrees. We tried to find the optimum antenna arrangement that has no grating lobe, lower sidelobe level and simple arrangement by using optimization method of trial and error (antenna potential function method) [Nishimura and Sato, 2009]. We use this method under various restricting conditions, and get various antenna arrangements that are possible to be the optimum antenna arrangement.
We conclude that the following arrangement is the best for EMU in this method: Each group (having 19 antennas) is hexagon-shaped triangular arrangement, and groups are arranged so that each ridge of the hexagon is in parallel with ridge of an adjacent hexagon. In the best arrangement, a grating lobe is reduced by 5 dB. Therefore, it becomes possible to observe low elevation angle by using adaptive clutter rejection method [Kamio et al., 2004]. However, sidelobe levels of other directions are increased by 15 dB at most. Further investigation is needed to decide to adopt this arrangement or not to EMU.