日本地球惑星科学連合2015年大会

講演情報

口頭発表

セッション記号 P (宇宙惑星科学) » P-PS 惑星科学

[P-PS23] 月の科学と探査

2015年5月25日(月) 14:15 〜 16:00 A02 (アパホテル&リゾート 東京ベイ幕張)

コンビーナ:*長岡 央(早稲田大学先進理工学部)、諸田 智克(名古屋大学大学院環境学研究科)、Masaki N Nishino(Solar-Terrestrial Environment Laboratory, Nagoya University)、本田 親寿(会津大学)、長 勇一郎(立教大学理学部)、座長:石原 吉明(宇宙航空研究開発機構 月・惑星プログラムグループ 研究開発室)、山本 聡(国立環境研究所環境計測研究センター)

15:30 〜 15:45

[PPS23-06] 月表面反射スペクトルの教師なし分類と月地質(1)

*石原 吉明1晴山 慎2大竹 真紀子1 (1.宇宙航空研究開発機構、2.聖マリアンナ医科大学)

キーワード:月, 地質図, 教師なし分類

Great successes of recent lunar missions provide vast amount of varieties of remote sensing data. Analysis of those new data provide some new key evidences, such as pure-plagioclase rocks (e.g., Ohtake et al., 2009) and olivine rich rocks (e.g., Yamamoto et al., 2010), for studying solidification process of the Lunar Magma Ocean (LMO) and following lunar evolutions. Those key evidences require us to reconsider the LMO solidification process. One approach to study this problem is requiring following step, reconstruction of compositions and structures for primitive crust by removing influences of volcanisms, impact cratering, and other geological effects. For reconstructing primitive crust, we have to generate a global geological map covers recent findings, so we started a project to build a new lunar geological map to reconstruct structures and composition of the lunar primitive crust. Because of huge volume of recent data set, fully manual classify by expert researchers is not realistic, and then, we have been trying to use some data mining methods for basic unit candidate estimation.
In this study, we show some classification results of SELENE Multiband Imager (MI) data and Spectral Profiler (SP) data applied data mining methods, and compare them with a fully manual classification result for a limited area. Our classification procedure consists of two steps; Independent Component Analysis (ICA) and Iterative Self-Organizing Data Analysis (ISODATA). Detail strategy of our procedure is presented by Hareyama et al. in this meeting.
Our procedure generally works well. The classification results in mare region indicate that could detect some types of mare basalt flows. Especially high-Ti basalt in Oceanus Procellarum and the Mare Tranquillitatis are clearly identified. Ejecta deposits of fresh ray craters are also clearly identified. In addition, we compare classification results our procedure around the Aristarchus region with that of fully manual classification result by a researcher (M.O.). These two agrees each other generally. Then, we consider our procedure capture the lunar geological context and useful for the first step of building lunar geological map.