日本地球惑星科学連合2015年大会

講演情報

口頭発表

セッション記号 B (地球生命科学) » B-BG 地球生命科学・地圏生物圏相互作用

[B-BG21] 熱帯ー亜熱帯沿岸生態系における物質循環

2015年5月27日(水) 09:00 〜 10:45 304 (3F)

コンビーナ:*渡邉 敦(東京工業大学 大学院情報理工学研究科 情報環境学専攻)、本郷 宙軌(琉球大学理学部物質地球科学科)、宮島 利宏(東京大学 大気海洋研究所 海洋地球システム研究系 生元素動態分野)、座長:本郷 宙軌(琉球大学理学部物質地球科学科)、宮島 利宏(東京大学 大気海洋研究所 海洋地球システム研究系 生元素動態分野)

10:05 〜 10:20

[BBG21-05] サンゴの環境変化に対する応答を評価・予測するためのリーフスケールモデリングシステム

*中村 隆志1灘岡 和夫1渡邉 敦1山本 高大1 (1.東京工業大学大学院情報理工)

キーワード:サンゴポリプモデル, サンゴ礁スケール, 数値シミュレーション, 海洋酸性化, 海水準上昇

Coral reefs exhibit significant spatiotemporal variations in temperature, CO2 system parameters (dissolved inorganic carbon, total alkalinity, pH, CaCO3 saturation state, etc.), flow field, etc. Therefore it is difficult to regard any coral incubation experiments as those simulating actual environmental conditions, because many experiments are conducted under steady or gradually changing environmental conditions. Reconstruction of reef environments by numerical hydrodynamic simulations is getting close to practical use level with the developments in computer simulation technology (e.g., Watanabe et al. 2013). Development of a sophisticated coral-response model coupled with a reef-scale hydrodynamic model is an effective approach for evaluating and predicting reef responses to the changes in various environmental conditions. For this purpose, we recently developed a coral polyp model (Nakamura et al. 2013), which can well reconstruct the coral responses to ocean acidification, flow conditions and others. We then incorporated it into a reef-scale model based on a 3D hydrodynamic model (ROMS) following the Carbonate System Dynamics (CSD) model (Watanabe et al. 2013). The developed model system was applied to the Shiraho fringing reef, Ishigaki Island, Japan, and it was confirmed that the model system well reconstructed the spatiotemporal variations of the reef environmental parameters. According to IPCC (2013), pCO2 will reach at ca. 935 μatm and sea-level will rise to ca. 0.45-0.82 cm for late 21st century if we select the RCP8.5 scenario. Therefore we analyzed four different scenarios: (1) present condition, (2) high pCO2 (~935 μatm) condition, (3) high sea-level condition (63 cm higher than present), and (4) high pCO2 and high sea-level condition. The simulation result of high-pCO2 condition indicated that the coral calcification rate will decrease to ca. 75% from the present condition. When the sea-level will be 63 cm higher than the present condition, the calcification will increase to ca. 107% because both the mass exchange between the corals and their ambient sea water and that between inside and outside of the reef will be enhanced due to higher flow condition. When both pCO2 increase and sea-level rise will occur, the calcification rate will decrease to ca. 77%. This rate is lower than the present condition but it keeps higher than the case only with high-pCO2 effect. The results imply that comprehensive evaluation of concurrent multiple environmental effects is important for future predictions.