日本地球惑星科学連合2015年大会

講演情報

口頭発表

セッション記号 M (領域外・複数領域) » M-TT 計測技術・研究手法

[M-TT40] 地球惑星科学データ解析の新展開:データ駆動型アプローチ

2015年5月27日(水) 16:15 〜 18:00 201A (2F)

コンビーナ:*桑谷 立(東北大学大学院環境科学研究科)、駒井 武(東北大学大学院 環境科学研究所)、宮本 英昭(東京大学総合研究博物館)、小池 克明(京都大学大学院工学研究科 都市社会工学専攻地殻環境工学講座)、堀 高峰(独立行政法人海洋研究開発機構・地震津波海域観測研究開発センター)、長尾 大道(東京大学地震研究所)、座長:岡本 敦(東北大学大学院環境科学研究科)、新原 隆史(東京大学 総合研究博物館)

17:00 〜 17:15

[MTT40-04] Lassoに基づく首都圏地震動分布のデータ駆動型イメージング

水迫 覚信1、*長尾 大道1廣瀬 慧2加納 将行1堀 宗朗1酒井 慎一1中川 茂樹1本多 亮3木村 尚紀4平田 直1 (1.東京大学地震研究所、2.大阪大学大学院基礎工学研究科、3.神奈川県温泉地学研究所、4.防災科学技術研究所)

キーワード:首都直下地震, 首都圏地震観測網, 疎性モデリング, lasso, イメージング, 正則化

Rapid prediction of damage due to large earthquakes on constructions such as buildings and bridges through a numerical simulation that computes seismic responses of all constructions provides important information for making a decision of priority order relating to rescue and rehabilitation activities without waiting for on-site reports. Such a simulation requires ground motion input to each construction, which usually distributes much denser than seismometers. An estimation of the ground motion should rely on data-driven modeling from observational data because of insufficient information related to hypocenters or underground structure models needed in a numerical simulation of seismic wave propagation.
We propose a new methodology based on lasso (least absolute shrinkage and selection operator) for the purpose of data-driven imaging of seismic wave field in an urban area from seismograms obtained by a dense array. The target of this study is the Tokyo metropolitan area, in which MeSO-net (Metropolitan Seismic Observation network) consisting of 296 accelerometers has been established. We assume that a Taylor's expansion model is capable of estimating the seismic wave field at an arbitrary point from seismograms at nearby observatories. This model is reduced to a multivariate linear regression of which the matrix of predictors is a set of products of positions of the observatories, the outcome matrix consists of the observational data, and the coefficient matrix to be estimated consists of the partial derivative coefficients. The coefficient matrix is estimated by group lasso, which minimizes an evaluation function consisting of a loss function given as the squared discrepancy between the observation data and the regression model, and a regularization term based on the L2 norm for selection of grouped variables. The reason why we implement group lasso rather than ordinary lasso is that it can avoid the dependency of subjective coordinate settings in time and space.
We have applied the proposed method to synthetic seismograms obtained from an analytic solution of seismic wave field assuming that an earthquake of M7 class occurs in a horizontally-layered underground. The resulting image reproduced better than those obtained by other methods such as the ordinary least square, ridge regression, and lasso. We have also applied these methods to the actual MeSO-net data when the 2011 Earthquake off the Pacific coast of Tohoku occurred, and confirmed that group lasso reproduced the actual seismic wave field better than other methods.