日本地球惑星科学連合2015年大会

講演情報

口頭発表

セッション記号 H (地球人間圏科学) » H-RE 応用地質学・資源エネルギー利用

[H-RE28] 地球温暖化防止と地学(CO2地中貯留・有効利用,地球工学)

2015年5月25日(月) 11:00 〜 12:45 105 (1F)

コンビーナ:*徳永 朋祥(東京大学大学院新領域創成科学研究科環境システム学専攻)、薛 自求(財団法人 地球環境産業技術研究機構)、徂徠 正夫(独立行政法人産業技術総合研究所地圏資源環境研究部門)、座長:徂徠 正夫(独立行政法人産業技術総合研究所地圏資源環境研究部門)

12:30 〜 12:45

[HRE28-13] 二相格子ボルツマン法を巨大デジタルロックに適用して明らかとなった貯留層特性が間隙内CO2の挙動に与える影響

*辻 健1蒋 飛1Christensen Kenneth2 (1.九州大学カーボンニュートラル・エネルギー国際研究所、2.ノートルダム大学)

キーワード:多相流, 3次元巨大デジタル岩石, 格子ボルツマン法, 流体挙動, 不均質

In CO2 geological storage, the behavior of CO2 inside a reservoir can be characterized as two-phase flow in a porous media system. Microscopic two-phase fluid behavior in porous media is influenced by temperature, interfacial tension, pore structure, and porous medium characteristics (e.g., wettability), which vary significantly from one reservoir to the next. Pore-scale interfacial instabilities, such as snap-off and fingering phenomena, influence the stability, injectivity, mobility, and saturation of CO2 within the reservoir. Therefore, understanding microscopic CO2 flow in porous media is crucial to estimating CO2 critical reservoir-scale characteristics, including storage capacity, leakage risk, and storage efficiency. Here we calculated fluid displacements within 3D pore spaces of Berea sandstone using two-phase lattice Boltzmann (LB) simulation, in order to characterize the influence of reservoir conditions upon multiphase flow. We classified the two-phase flow behavior that occurred under various conditions into three typical fluid displacement patterns on the diagram of capillary number (Ca) and viscosity ratio of the two fluids (M). We then characterized dynamic pore-filling events (i.e., Haines jumps) from the fluid pressure variation. The results revealed the onset of capillary fingering in natural rock at a higher Ca than previously reported for homogeneous porous media, with the crossover region between typical displacement patterns much broader than in a homogeneous granular model. These differences between two-phase flow in natural rock and in a homogeneous porous structure could be the result of the heterogeneity of the natural rock. Capillary fingering at higher Ca indicates that the dominant fluid displacement mechanism in most parts of the reservoir is likely capillary fingering. The simulation results reveal the influence of reservoir conditions on saturation of the CO2. Therefore, we have clarified suitable conditions for CO2 storage.