日本地球惑星科学連合2015年大会

講演情報

口頭発表

セッション記号 M (領域外・複数領域) » M-IS ジョイント

[M-IS22] 地球流体力学:地球惑星現象への分野横断的アプローチ

2015年5月27日(水) 11:00 〜 12:45 106 (1F)

コンビーナ:*伊賀 啓太(東京大学大気海洋研究所)、中島 健介(九州大学大学院理学研究院地球惑星科学部門)、吉田 茂生(九州大学大学院理学研究院地球惑星科学部門)、柳澤 孝寿(海洋研究開発機構 地球内部ダイナミクス領域)、相木 秀則(海洋研究開発機構)、座長:中島 健介(九州大学大学院理学研究院地球惑星科学部門)

11:00 〜 11:15

[MIS22-08] 全ての緯度帯の波を対象としたEliassen-Palm理論と渦度力学

*相木 秀則1高谷 康太郎2Richard Greatbatch3 (1.海洋研究開発機構、2.京都産業大学、3.GEOMAR / University of Kiel)

キーワード:慣性重力波, 中緯度ロスビー波, 各種赤道波

Classical theory concerning the Eliassen-Palm relation is extended in this study to allow for a unified treatment of mid-latitude inertia-gravity waves (MIGWs), mid-latitude Rossby waves (MRWs), and equatorial waves (EQWs). A conservation equation for (what the authors call) the impulse-bolus (IB) pseudomomentum is useful because it is applicable to ageostrophic waves and the associated three-dimensional flux is parallel to the direction of the group velocity of MRWs. The equation has previously been derived in an isentropic coordinate system or a shallow water model. The authors make an explicit comparison of prognostic equations for the IB pseudomomentum vector and the classical energy-based (CE) pseudomomentum vector, assuming inviscid linear waves in a sufficiently- weak mean flow, to provide a basis for the former quantity to be used in an Eulerian time-mean (EM) framework. The authors investigate what makes the three-dimensional fluxes in the IB and CE pseudomomentum equations look in different directions. It is found that the two fluxes are linked by a gauge transformation, previously unmentioned, associated with a divergence-form wave-induced pressure (symbolized as À in the present study). The quantity À vanishes for MIGWs and becomes nonzero for MRWs and EQWs, and may be estimated using the virial theorem. Concerning the effect of waves on the mean flow, the quantity À represents an additional effect in the pressure gradient term of both (the three-dimensional versions of) the transformed EM momentum equations and the merged form of the EM momentum equations (the latter of which is associated with the nonacceleration theorem).

http://dx.doi.org/10.1175/JAS-D-14-0172.1