日本地球惑星科学連合2015年大会

講演情報

ポスター発表

セッション記号 S (固体地球科学) » S-IT 地球内部科学・地球惑星テクトニクス

[S-IT35] 地球深部ダイナミクス:プレート・マントル・核の相互作用

2015年5月26日(火) 18:15 〜 19:30 コンベンションホール (2F)

コンビーナ:*中川 貴司(海洋研究開発機構数理科学・先端技術研究分野)、綿田 辰吾(東京大学地震研究所海半球観測研究センター)、境 毅(愛媛大学地球深部ダイナミクス研究センター)

18:15 〜 19:30

[SIT35-P08] コア形成シミュレーションにおけるストークス流の移流陰解法

*古市 幹人1Dave May2 (1.数理科学・先端技術研究分野、 海洋研究開発機構、2.Institute of Geophysics, ETH Zurich)

キーワード:コア形成, 陰解法, 非線形ソルバ, 自由境界表面

In order to investigate the long time-scales of the global core formation process in a growing planet, we are developing the Stokes flow simulation code using MIC based techniques for material transport with a free-surface treatment. We are interested in the dynamical change of the internal structure after solidification of magma ponds/oceans during the core formation under a self-gravitating field, especially because it might lead to an initial heterogeneous structure in the deep mantle.
However current numerical solution method is difficult to solve the system coupled with the energy equation because the numerical system becomes stiff when the dynamical balancing time scale for the increasing/decreasing load by surface deformation is very short compared with the time scale associated with thermal convection. Any explicit time integration scheme will require very small time steps; otherwise, serious numerical oscillation (spurious solutions) will occur.
In this work, we propose to treat the advection as a coordinate nonlinearity, coupled to the momentum equation, thereby defining a fully implicit time integration scheme suitable for stiff problems [Furuichi and May, Compt. Phys. Commum 2015]. We utilize a Jacobian free Newton Krylov (JFNK) based Newton framework to solve the resulting nonlinear equations. We also investigate efficient solution strategies to reduce the computational cost to evaluate the nonlinearity on MIC advection.
These implicit methods are implemented within FD framework [Gerya and Yuen, 2003]. We examine the solution quality and efficiency of these methods by performing numerical experiments we have performed a series of numerical experiments which clarify the accuracy of solutions and trade-off between the computational cost associated with the nonlinear solver and time step size.