日本地球惑星科学連合2015年大会

講演情報

インターナショナルセッション(ポスター発表)

セッション記号 P (宇宙惑星科学) » P-PS 惑星科学

[P-PS05] Mars

2015年5月27日(水) 18:15 〜 19:30 コンベンションホール (2F)

コンビーナ:*佐藤 毅彦(宇宙航空研究開発機構・宇宙科学研究本部)、石渡 正樹(北海道大学大学院理学院宇宙理学専攻)、佐々木 晶(大阪大学大学院理学研究科宇宙地球科学専攻)、高橋 芳幸(神戸大学大学院理学研究科)、松岡 彩子(宇宙航空研究開発機構 宇宙科学研究所 太陽系科学研究系)、宮本 英昭(東京大学総合研究博物館)

18:15 〜 19:30

[PPS05-P05] 火星環境下におけるグリセロール溶液の挙動

西澤 昌高1深田 翔1、*佐々木 聰1宮川 厚夫2佐藤 毅彦3今井 栄一4本多 元4吉村 義隆5山岸 明彦2 (1.東京工科大学、2.東京薬科大学、3.宇宙航空研究開発機構、4.長岡科学技術大学、5.玉川大学)

キーワード:ミーロス, 生命探査顕微鏡, グリセロール溶液

Microscopic detection of possible bacterial cells on Mars using life detection microscope (LDM) is planned in MELOS (Mars Exploration for Living Organisms) project. One candidate solution for the fluorescent dyes is 66.7% glycerol. Under Martian atmosphere, evaporation of water from the solution is expected. Estimation of evaporation flux and resulting behaviors (mass change, cooling, convention, bubbling etc.) should be essential for the design of sample handling system (SHS) and imaging procedure. Observation of solution mass change, convection, bubbling of the solution sealed in the 7 hPa chamber was performed. Convection was analyzed from the thermographic images. Measurement of water activity was also performed with and without the model sand samples. Following results were obtained: (1) Glycerol concentration changed after water evaporation. Freezing temperature should, therefore, increase and solution freezing might occur. The amount of evaporated water depended on the hole diameter of the sealing cap, indicating that even incomplete sealing was effective. (2) The solution showed heterogenious density distribution as a result of evaporation. Convection, which was infavorable for the image capturing, due to the nonuniform density was observed. (3) Sand attached-water showed various water activity, which changed according to the material and size of the sand particles.
The 66.7% glycerol solution containing fluorescent dyes also successfully stained cultured bacteria, organic materials, and microorganisms in Marian soil simulant and natural environmental samples. We also developed the formula and conditions to preserve the fluorescence pigment before and after landing on Mars and during the microscopic observation.

Reference
M. Nishizawa et al. (2013) Fluorescent Dye Handling System for MELOS1 Life Detection Microscope. In International Astrobiology Workshop 2013, p. 47. LPI Contribution No. 1766, Lunar and Planetary Institute, Houston.