日本地球惑星科学連合2015年大会

講演情報

口頭発表

セッション記号 P (宇宙惑星科学) » P-PS 惑星科学

[P-PS24] 宇宙における物質の形成と進化

2015年5月27日(水) 14:15 〜 16:00 A02 (アパホテル&リゾート 東京ベイ幕張)

コンビーナ:*橘 省吾(北海道大学大学院理学研究院自然史科学専攻地球惑星システム科学分野)、三浦 均(名古屋市立大学大学院システム自然科学研究科)、大坪 貴文(東京大学大学院総合文化研究科)、本田 充彦(神奈川大学理学部数理物理学科)、座長:大坪 貴文(東京大学大学院総合文化研究科)

14:45 〜 15:00

[PPS24-10] アンモニアの粘土鉱物への吸着実験:星間分子雲における窒素同位体分別解明に向けて

*菅原 春菜1高野 淑識1小川 奈々子1力石 嘉人1大河内 直彦1 (1.独立行政法人海洋研究開発機構)

キーワード:窒素同位体分別, 吸着, アンモニア, 星間分子雲

Nitrogen is the fifth abundant element in the universe and also essential component of organic molecules. Various nitrogen-containing organic compounds have been found by laboratory analysis of extraterrestrial materials. The stable isotopic composition of nitrogen (15N/14N ratio) will give information about evolutionary history of the organic molecules. Primitive solar system materials such as chondrites, comets, and interplanetary dust particles (IDPs) show various degrees of 15N-enrichment compared to the solar system value of -400‰[1]. They display up to +1500‰in the bulk δ15N value (‰, normalized as vs. AIR) [2, 3]. Furthermore, anomalously high 15N-enrichments, as called hot spots, have been frequently found within a single material with the highest δ15N values reaching as high as +5000‰ [4]. These 15N-enrichments are considered to be originated in cold interstellar environments. However, the mechanisms of isotopic fractionation of nitrogen in the interstellar medium are not well understood and only a few models have been proposed [e.g., 5].
In this study, we focused on adsorption process of ammonia on grain surface of interstellar dusts as a potential mechanism for the extreme 15N-enrichment and its high-heterogeneity found in extraterrestrial materials. Ammonia is a primitive nitrogen-containing compound and also one of major molecules in molecular clouds. Since ammonia is a highly reactive chemical, it is a precursor for nitrogen-involving organic molecules. The adsorption of ammonia on grain surface would be the first step for the formation of more complicated organic molecules. In order to examine the isotopic fractionation of nitrogen through adsorption of ammonia on grain surface, we performed experiments using ammonia gas and several adsorbents. For the experiments, six clay minerals (montmorillonite, saponite, dickite, kaolinite, pyrophyllite, and halloysite) were selected as the adsorbents. They were kept at 110℃ prior to the experiments to minimize adsorbed water. The each clay mineral was enclosed into a vacuumed glass vial and then ammonia gas (27‰, SI science) was introduced. A few days later, the glass vial was opened and the nitrogen isotopic composition of the adsorbed ammonia was determined by nanoEA/IRMS [6]. The results showed a relationship between δ15N values and the adsorbed ratio, which is explained by Rayleigh fractionation model. The adsorbents with low adsorption ratio have higher δ15N values compared to initial ammonia gas. The difference in the degree of 15N-enrichment and adsorption property among clay minerals was also observed. These results imply that the adsorption of ammonia on grain surface should be considered as one of potential scenarios for 15N-enrichment.

Reference: [1] Marty B. et al. (2011) Science 332, 1533. [2] Bonal L. et al. (2010) GCA 74, 6590. [3] Manfroid J. et al. (2009) A&A 503, 613. [4] Briani G. et al. (2009) PNAS 106, 105222. [5] Rodgers S.D. & Charnley S.B. (2008) Mon.Not.R.Astron.Soc.385, L48. [6] Ogawa et al. (2010) in Earth, Life, and Isotopes. pp.339.