日本地球惑星科学連合2015年大会

講演情報

口頭発表

セッション記号 S (固体地球科学) » S-TT 計測技術・研究手法

[S-TT55] ハイパフォーマンスコンピューティングが拓く固体地球科学の未来

2015年5月27日(水) 14:15 〜 16:00 103 (1F)

コンビーナ:*堀 高峰(独立行政法人海洋研究開発機構・地震津波海域観測研究開発センター)、金田 義行(海洋研究開発機構)、堀 宗朗(東京大学地震研究所)、日野 亮太(東北大学災害科学国際研究所)、有川 太郎(独立行政法人港湾空港技術研究所)、等々力 賢(東京大学大学院情報学環 総合防災情報研究センター / 地震研究所 巨大地震津波災害予測研究センター)、座長:堀 高峰(独立行政法人海洋研究開発機構・地震津波海域観測研究開発センター)

15:15 〜 15:30

[STT55-04] 3次元非平面断層解析に適した動的境界要素法の領域分割法による高速化

*安藤 亮輔1 (1.東京大学理学系研究科)

キーワード:境界要素法, 境界積分方程式法, 非平面断層, 動的破壊, 領域分割, 高速解法

The boundary integral equation method (BIEM) is a powerful tool to analyze the earthquake rupture dynamics on non-planar faults. The non-planar fault analysis requires of the boundary integral equations (BIEs) that they are formulated in the real space and time domain, while those formulate in the spectral domain are limited to the application of the planar fault geometry. However BIEM in the space-time domain has extremely large numerical costs. Due to such large costs particular for the memory requirement, efficient use of the memory storage of the integration kernel have not be possible. In this study, we develop a new method to reduce the calculation time and memory requirement greatly without degrading the accuracy in 3-D. We extend the method proposed by Ando et al. (2007) in 2-D. This method divide the causality cone appealing in the integration kernel to the domains related to the wave fronts, the near-field term and the static term. We implement the algorithm on K-computer, and demonstrate the memory storage of the integration kernel becomes possible on the currently available computational environment owing to the reduced memory requirement. This contributes the efficiency of the numerical analysis considerably. For example, by using the same 6400 nodes, the analysis of the model consisting of 160 thousands fault elements and 1600 time steps took about a half year with the original method, however it is reduced to about two hours with the current efficient method. The current method is also shown to be scalable on distributed memory environment to the scale of these nodes. This method is expected to break through the emerging limitations of the dynamic earthquake rupture simulations with realistic 3-D geometrical models, and will contribute to widen the spectrum of the applicational works using the dynamic simulations.