Japan Geoscience Union Meeting 2015

Presentation information

International Session (Poster)

Symbol S (Solid Earth Sciences) » S-IT Science of the Earth's Interior & Techtonophysics

[S-IT04] Rheology of Earth's Interior

Wed. May 27, 2015 6:15 PM - 7:30 PM Convention Hall (2F)

Convener:*Tomohiro Ohuchi(Geodynamics Research Center, Ehime University), Shun-ichiro Karato(Yale University, Department of Geology and Geophysics), Katsuyoshi Michibayashi(Institute of Geosciences, Shizuoka University)

6:15 PM - 7:30 PM

[SIT04-P01] Iron concentration around dislocation in naturally deformed olivine

*Takafumi YAMAMOTO1, Jun-ichi ANDO1, Naotaka TOMIOKA2, Motoo ITO2, Tomoaki MORISHITA3, Hiroaki OHFUJI4 (1.Department of Earth and Planetary Systems Science, Hiroshima University, 2.Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, 3.UniversitySchool of Natural System, Kanazawa University, 4.Geodynamics Research Center, Ehime)

The concentration of specific atom on dislocation core can be caused by pipe diffusion and Cottrell atmosphere. Both the phenomena are important for the property of materials including rocks and minerals. As an example of the former, Fe concentration has been reported in the naturally deformed olivine (e.g. Plumper et al., 2011). Pipe diffusion is important for atomic migration during various reactions in the Earth, such as metasomatism and serpentinization. On the other hand, Kitamura et al. (1986) and Ando et al. (2001) have reported Fe concentration in the mantle-derived olivine caused by Cottrell atmosphere. The Cottrell atmosphere strongly influences plasticity of materials in the low strain rate regime. Therefore, the discovery of Cottrell atmosphere from the mantle-derived olivine indicates that the effect on the plasticity of olivine is important to understand mantle dynamics under very low strain rate condition. However, the possibility of pipe diffusion cannnot be neglected completely to explain the observations of Kitamura et al. (1986) and Ando et al. (2001). Here, we carried out more detailed chemical composition analysis of the mantle-derived olivine to assess whether the Fe concentration on dislocation core is a common phenomenon, and to clarify the exact mechanism of the Fe concentration, i.e. Cottrell atmosphere or not.
We studied two types of peridotites, which are xenolith-type in basalt (Takashima, Megata, Kurose and Salt Lake) and alpine-type (Uenzaru and Horoman) by using EPMA and ATEM techniques. EPMA and ATEM analyses show Fe concentration at dislocations in all the studied samples, which suggests that it is a common phenomenon in mantle peridotites. Fe-enrichment at the rim of olivine grains and other major element concentration on dislocations, which are general features of pipe diffusion, cannot be observed. Therefore, the mechanism of Fe concentration on dislocation core in olivine grains is possibly derived by Cottrell atmosphere, not pipe diffusion.

Ando et al. (2001) Nature, 414, 893; Kitamura et al. (1986) Proc. Japan Acad., 62, 149; Plumper et al. (2011), Contributions to Mineralogy and Petrology, 163, 701.