日本地球惑星科学連合2015年大会

講演情報

口頭発表

セッション記号 H (地球人間圏科学) » H-RE 応用地質学・資源エネルギー利用

[H-RE28] 地球温暖化防止と地学(CO2地中貯留・有効利用,地球工学)

2015年5月25日(月) 14:15 〜 16:00 105 (1F)

コンビーナ:*徳永 朋祥(東京大学大学院新領域創成科学研究科環境システム学専攻)、薛 自求(財団法人 地球環境産業技術研究機構)、徂徠 正夫(独立行政法人産業技術総合研究所地圏資源環境研究部門)、座長:薛 自求(公益財団法人 地球環境産業技術研究機構)

14:15 〜 14:45

[HRE28-14] CCSの実用化に向けての日本の取り組み

*松岡 俊文1 (1.京都大学大学院工学研究科)

キーワード:二酸化炭素, CCS, モニタリング, トラップメカニズム, 貯留ポテンシャル, 実用化

The IPCC published a special report on Carbon dioxide Capture and Storage(CCS) in 2005, stating that CCS is one of the promising options for mitigating carbon dioxide emissions into the atmosphere. Among several CO2 storage options, storing CO2 in saline aquifers is the most promising because of the large storage potential, estimated at from about 2,000 Gt CO2 to more than 10,000 Gt CO2. Some CCS technologies are already in practical use in several countries and are economically viable. Close attention has been paid recently to deep saline aquifer storage, which is expected to have a large storage potential of about 2,000 Gt CO2 throughout the world. First of all this presentation describes current global trends of CCS technology development and national policies. Then this presentation focuses on the mechanisms of deep saline aquifer CO2 storage. In deep saline aquifer storage, chemical reactions in the water-rock-CO2 system play important roles for trapping CO2 in the aquifer formation, as well as physical trapping by overburden impermeable cap rocks and residual gas trapping mechanisms. The presentation will also stress the importance of the long-term monitoring of the storage aquifer because CO2 would be trapped stably in the formation for a long time. It is thus important to develop effective monitoring techniques for the behavior of CO2 in the aquifer. Physical as well as chemical monitoring techniques should be used for storage aquifer monitoring. Finally the presentation conclude with discussions about storage potential in Japan and some important issues related to deep saline aquifers. Deep saline formations are distributed widely in Japan, and have the potential for the geological storage of 146 Gt of CO2. It is therefore economically feasible to use deep saline formations near large emission sources such as coal-fired power plants and integrated steel works. To realize CCS in Japan, it is important to make further advances in studies on the basic physical and chemical trapping mechanisms of water-rock-CO2 system, and in studies on the geological characteristics of aquifer formations.