日本地球惑星科学連合2015年大会

講演情報

インターナショナルセッション(口頭発表)

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM07] Space Weather, Space Climate, and VarSITI

2015年5月26日(火) 11:00 〜 12:45 302 (3F)

コンビーナ:*片岡 龍峰(国立極地研究所)、海老原 祐輔(京都大学生存圏研究所)、三好 由純(名古屋大学太陽地球環境研究所)、清水 敏文(宇宙航空研究開発機構宇宙科学研究所)、浅井 歩(京都大学宇宙総合学研究ユニット)、陣 英克(情報通信研究機構)、佐藤 達彦(日本原子力研究開発機構)、草野 完也(名古屋大学太陽地球環境研究所)、宮原 ひろ子(武蔵野美術大学造形学部)、中村 卓司(国立極地研究所)、塩川 和夫(名古屋大学太陽地球環境研究所)、伊藤 公紀(横浜国立大学大学院工学研究院)、座長:清水 敏文(宇宙航空研究開発機構宇宙科学研究所)

11:00 〜 11:15

[PEM07-39] 時系列予測機UFCORINを利用したGOES X線ライトカーブにおける太陽フレア予報研究

*村主 崇行1柴山 拓也2羽田 裕子3磯部 洋明4根本 茂5駒﨑 健二5柴田 一成3 (1.理化学研究所計算科学研究機構、2.名古屋大学太陽地球環境研究所、3.京都大学大学院附属天文台、4.宇宙総合学研究ユニット、5.株式会社ブロードバンドタワー)

キーワード:太陽フレア, 宇宙天気, フレア予測, SDO, ビッグデータ, 機械学習

We have been developing UFCORIN, an automated space weather prediction system based on machine-learning technologies. Our aim is twofold: one is to provide real-time space weather forecast that thoroughly utilize the huge amount of solar observation data available today. The other is to discover the observational flare-triggering features, by analyzing the big data with the clear goal of predicting the solar flares.
UFCORIN stands for Universal Forecast Constructor by Optimized Regression of INputs. As the name suggests, UFCORIN is designed as a generic time-series predictor, which can be set to predict arbitrary time series from arbitrary numbers and kinds of input time series.
Using our system we predict maximum of GOES X-ray flux for 24-hour period in the future. As inputs to the predictor, we use wavelet powers of the full disk line-of-sight magnetogram obtained by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO). We also use the total magnetic flux data by SDO/HMI, and past data of GOES X-ray flux as inputs. The simulated prediction ran for 2 years (2011-2012) with 1-hour time resolution. To predict X, ≥M and ≥C class flares events, we first predict the real value of the GOES X-ray flux maximum, and then apply different thresholds for different events. These thresholds are part of the prediction parameter subject to optimization.
Following Bloomfield et al. [2012], we use true skill statistics (TSS) to compare the performance of various prediction strategies. Our best TSS values using HMI and GOES data are 0.692, 0.470 and 0.566, respectively, for predicting X, ≥M and ≥C class flares. These TSS values are comparable to previous studies such as those by Song et al. [2009], by Bloomfield et al. [2012], and by Bobra & Couvidat [2014]. We emphasize that we predict flares for the 2-years continuous period, and make no use of active region detection. In contrast, all of the previous studies are based on active region images and selected set of events.
At the annual meeting, we would also like to report the progress of our ongoing research, for example the search of flare features in SDO/AIA ultraviolet images. Also, our techniques can be applied to the prediction of space weather events other than solar flares, such as solar wind, solar energetic particles, and geomagnetic disturbances. We are also trying to quantify the social and economic impacts of the solar flares, in order to provide customized space weather forecast for various human activities.