日本地球惑星科学連合2015年大会

講演情報

ポスター発表

セッション記号 H (地球人間圏科学) » H-TT 計測技術・研究手法

[H-TT29] 環境リモートセンシング

2015年5月24日(日) 18:15 〜 19:30 コンベンションホール (2F)

コンビーナ:*作野 裕司(広島大学大学院工学研究院)、近藤 昭彦(千葉大学 環境リモートセンシング研究センター)、長谷川 均(国士舘大学 文学部)、桑原 祐史(茨城大学 広域水圏環境科学教育研究センター)、石内 鉄平(明石高専 都市システム工学科)

18:15 〜 19:30

[HTT29-P02] 耕作休止農地を対象とした土地被覆分類手法の評価

*三島 啓雄1深澤 圭太1吉岡 明良1熊田 那央1小熊 宏之1山野 博哉1 (1.独立行政法人 国立環境研究所)

In order to reveal the impact of evacuation on biota, National Institute for Environmental Studies is monitoring biota in areas evacuated as a result of nuclear disaster, and the surrounding areas in Fukushima Prefecture, Japan. It includes the monitoring of "land cover" in the study area. This involves regular observation of areas that contain "residential area" and "arable land", where humans have historically performed regular maintenance. These are fundamental elements to discuss the change of local ecosystems due to abandonment. Areas of arable land in the study area are much greater than the residential areas. For this reason, priority should be given to the analysis of arable land. Environmental change in unattended farmland associated with evacuation is relatively quick. And the physical environment of arable land typified by moisture condition is different for each paddy and upland field plot. Therefore, it is necessary to monitor field plots with distinguishable spatial resolution in short cycles. This study evaluated land cover classification methods for arable land considering these requirements. Spaceborne satellite imagery was used with revisit time and spatial resolution matched to these conditions. Arable land in the study area was first defined by aerial photo interpretation. Then, using multi-temporal, multispectral imagery (RapidEye, spatial resolution = 5 m) and single polarization of L-band SAR imagery (PALSAR-2, spatial resolution = 3 m), land cover was categorized based on the machine learning classification methods with training data. Comparison of multiple methods and datasets revealed a classification technique that combines SAR data and multispectral imagery provided improved classification accuracy.