日本地球惑星科学連合2016年大会

講演情報

インターナショナルセッション(ポスター発表)

セッション記号 A (大気水圏科学) » A-AS 大気科学・気象学・大気環境

[A-AS01] Global Carbon Cycle Observation and Analysis

2016年5月24日(火) 17:15 〜 18:30 ポスター会場 (国際展示場 6ホール)

コンビーナ:*三枝 信子(国立環境研究所)、Patra Prabir(Research Institute for Global Change, JAMSTEC)、町田 敏暢(国立環境研究所)、茶谷 聡(国立環境研究所)

17:15 〜 18:30

[AAS01-P14] Annual variaiton of soil respiriration in subtropical afforetation forest in Taiwan

*PoNeng Chiang1Jui-Chu Yu1Yen-Jen Lai1 (1.Experimental Forest, National Taiwan University)

キーワード:Soil respiration, Plantation, Spatial Variation

Global forests contain 69% of total carbon stored in forest soil and litter. But the carbon storage ability and release rate of warming gases of forest soil also affect global climate change. Soil carbon cycling processes are paid much attention by ecological scientists and policy makers because of the possibility of carbon being stored in soil via land use management. Soil respiration contributed large part of terrestrial carbon flux, but the relationship of soil respiration and climate change was still obscurity. Most of soil respiration researches focus on template and tropical area, little was known that in subtropical area. Afforestation is one of solutions to mitigate CO2 increase and to sequestrate CO2 in tree and soil. Therefore, the objective of this study is to clarify the relationship of tree species and soil respiration distribution in subtropical broad-leaves plantation in southern Taiwan. The research site located on southern Taiwan was sugarcane farm before 2002. The sugarcane was removed and fourteen broadleaved tree species were planted in 2002-2005. Sixteen plots (250m*250m) were set on 1 km2 area, each plot contained 4 subplots (170m2). The forest biomass (i.e. tree height, DBH) understory biomass, litter, and soil C were measured and analyzed at 2011 to 2015. Soil respiration measurement was sampled in each subplot in each month. The soil belongs to Entisol with over 60% of sandstone. The soil pH is 5.5 with low base cations because of high sand percentage. Soil carbon storage showed significantly negative relationship with soil bulk density (p<0.001) in research site. The differences of distribution of live tree C pool among 16 plots were affected by growth characteristic of tree species. Data showed that the accumulation amount of litterfall was highest in December to February and lowest in June. Different tree species planted in 16 plots, resulting in high spatial variation of litterfall amount. It also affected total amount of litterfall temporal variation. Soil respiration was related with season variation in research site. Soil temperature and soil respiration showed highly spatial variation in 16 plots. Soil temperature showed significantly exponential related with soil respiration in research site (p<0.001). Annual soil temperature was decrease with tree age increasing in this 5 years. Annual soil respiration was showed decrease with tree age increasing. However, soil respiration showed significantly negative relationship with total amount of litterfall (p<0.001), suggesting that the tree was still young and did not reach crown closure.