日本地球惑星科学連合2016年大会

講演情報

インターナショナルセッション(口頭発表)

セッション記号 A (大気水圏科学) » A-AS 大気科学・気象学・大気環境

[A-AS02] High performance computing of next generation weather, climate, and environmental sciences using K

2016年5月22日(日) 13:45 〜 15:15 302 (3F)

コンビーナ:*佐藤 正樹(東京大学大気海洋研究所)、木本 昌秀(東京大学大気海洋研究所)、斉藤 和雄(気象研究所予報研究部)、瀬古 弘(気象研究所)、三好 建正(理化学研究所計算科学研究機構)、田村 哲郎(東京工業大学大学院総合理工学研究科)、新野 宏(東京大学大気海洋研究所海洋物理学部門海洋大気力学分野)、滝川 雅之(独立行政法人海洋研究開発機構)、富田 浩文(理化学研究所計算科学研究機構)、小玉 知央(独立行政法人海洋研究開発機構)、座長:小玉 知央(独立行政法人海洋研究開発機構)

14:30 〜 14:45

[AAS02-04] Ensemble Data Assimilation of GSMaP precipitation into the nonhydrostatic global atmospheric model NICAM

*小槻 峻司1寺崎 康児1Lien Guo-Yuan1三好 建正1,2Kalnay Eugenia2 (1.国立研究開発法人 理化学研究所 計算科学研究機構、2.Department of Atmospheric and Oceanic Science, University of Maryland, USA)

キーワード:Data Assimilation, GSMaP, NICAM-LETKF, Gaussian Transformation

It is generally difficult to assimilate precipitation data into numerical models mainly because of non-Gaussianity of precipitation variables and nonlinear precipitation processes. Lien et al. (2013, 2015) proposed to use an ensemble Kalman filter approach to avoid explicit linearization of models, and a Gaussian transformation (GT) method to deal with the non-Gaussianity of precipitation variables. Lien et al. pioneering results show that using an EnKF and GT helps improve the forecasts by assimilating global precipitation data, in both a simulated study using the SPEEDY model, and in a real-world study using the NCEP GFS and TRMM Multi-satellite Precipitation Analysis (TMPA) data.
This study extends the work of Lien et al. by assimilating the JAXA’s Global Satellite Mapping of Precipitation (GSMaP) data into the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) at 112-km horizontal resolution. It develops a new method to construct the two GTs (forward and inverse GTs) for observed and forecasted precipitation using the previous 30-day precipitation data. Using this new forward GT, precipitation variables are transformed to Gaussian variables, and assimilating the GSMaP precipitation results in improved forecasts. We also found that using the inverse GT allows to create realistic observation-like precipitation fields from the model forecasts transformed by the observation-based inverse GT. Moreover, we also explore online estimation of model parameters related to precipitation processes using precipitation data. This presentation will include the most recent progress up to the time of the meeting.