日本地球惑星科学連合2016年大会

講演情報

インターナショナルセッション(ポスター発表)

セッション記号 A (大気水圏科学) » A-AS 大気科学・気象学・大気環境

[A-AS02] High performance computing of next generation weather, climate, and environmental sciences using K

2016年5月22日(日) 17:15 〜 18:30 ポスター会場 (国際展示場 6ホール)

コンビーナ:*佐藤 正樹(東京大学大気海洋研究所)、木本 昌秀(東京大学大気海洋研究所)、斉藤 和雄(気象研究所予報研究部)、瀬古 弘(気象研究所)、三好 建正(理化学研究所計算科学研究機構)、田村 哲郎(東京工業大学大学院総合理工学研究科)、新野 宏(東京大学大気海洋研究所海洋物理学部門海洋大気力学分野)、滝川 雅之(独立行政法人海洋研究開発機構)、富田 浩文(理化学研究所計算科学研究機構)、小玉 知央(独立行政法人海洋研究開発機構)

17:15 〜 18:30

[AAS02-P11] An Ultra-high Resolution Numerical Weather Prediction with a Large Domain Using the K Computer

*大泉 伝1,2斉藤 和雄2,1伊藤 純至2DUC Le1,2 (1.国立研究開発法人海洋研究開発機構、2.気象庁気象研究所)

キーワード:K computer, Ultra-high Resolution Numerical Weather Prediction, JMA-NHM

In Japan, heavy rainfalls occasionally cause disasters such as debris flows and floods that induce severe damage to society. The high resolution numerical weather prediction (NWP) model has found to be important for this kind of disaster mitigation.
Accuracy of numerical prediction models depends on several factors such as resolution, domain size, dynamics and physical processes. Especially, finer grid spacing contributes to improving the representation of deep moist convection, reducing discretization errors, and expressing more realistic topography. However, little studies have conducted ultra-high resolution simulations (100 m scale) with a large model domain. Such a high resolution, large domain experiment needs a very large computational resource such as the K computer.
The authors have conducted ultra-high resolution experiments of heavy rain events with K computer and the Japan Meteorological Agency nonhydrostatic model (JMA-NHM). The case studies are the heavy rain events in Izu Ohshima on October 2013 and Hiroshima on August 2014.
The objectives of this study are to examine whether an ultra-high resolution NWP model with a large domain is able to produce more accurate forecast and to elucidate its reason. The four factors of the NWP model were investigated: (1) grid spacing (up to 250 m), (2) turbulence closure model (Mellor-Yamada-Nakanishi-Niino [MYNN] level 2.5 and 3, and Deardorff [DD]), (3) model domain (1600×1100 km, and 200 km square), and (4) terrain data.
One of the main findings is the 250-m grid model with the finest terrain representation showed the best performance in both case studies. The results of this study demonsrate that the very high resolution NWP model with the large domain has the potential ability to better predict the meso-beta scale rain.