日本地球惑星科学連合2016年大会

講演情報

インターナショナルセッション(口頭発表)

セッション記号 A (大気水圏科学) » A-CG 大気水圏科学複合領域・一般

[A-CG10] Earth and Planetary satellite observation project Part II

2016年5月23日(月) 15:30 〜 17:00 303 (3F)

コンビーナ:*沖 理子(宇宙航空研究開発機構)、早坂 忠裕(東北大学大学院理学研究科)、佐藤 薫(東京大学 大学院理学系研究科 地球惑星科学専攻)、佐藤 正樹(東京大学大気海洋研究所)、本多 嘉明(千葉大学環境リモートセンシング研究センター)、奈佐原 顕郎(筑波大学生命環境系)、中島 孝(東海大学情報理工学部情報科学科)、沖 大幹(東京大学生産技術研究所)、松永 恒雄(国立環境研究所環境計測研究センター)、高薮 縁(東京大学 大気海洋研究所)、村上 浩(宇宙航空研究開発機構地球観測研究センター)、岡本 創(九州大学)、Gail Skofronick Jackson(NASA Goddard Space Flight Center)、Paul Chang(NOAA College Park)、Crisp David(Jet Propulsion Laboratory, California Institute of Technology)、座長:Chang Paul(NOAA College Park)、沖 大幹(東京大学生産技術研究所)

16:30 〜 16:45

[ACG10-11] Synergistic use of multisensor satellite observations for quantification of cloud processes and climate model diagnostics

*鈴木 健太郎1 (1.東京大学大気海洋研究所)

It is now recognized that key questions in climate sciences cannot be addressed with a single satellite observation alone. This recognition is an underlying motivation for emerging/existing multisensor satellite observations. One particular area of research to be advanced with such multisensor satellite observations is a characterization of physical processes in climate system, which still is a fundamental uncertainty in climate modeling. Cloud processes, among others, are one of the most uncertain components in state-of-the-art climate models and therefore are a particular target of studies that should be conducted with a synergistic use of multisensor satellite observations. In this presentation, I highlight our recent progress in combining multiple NASA satellites to obtain novel insight into cloud processes, which also has enabled a new “process-oriented” type of climate model diagnostics. In particular, we have developed methodologies for combining simultaneous measurements of cloud and precipitation provided by CloudSat and Aqua/MODIS. The methodologies exploit the unique measurement capability of the two sensors to construct the particular statistics that “fingerprint” the particle growth processes in warm clouds. Our recent investigation for land-ocean differences found in the statistics is also discussed in this presentation to identify a key role of updraft velocity in the warm rain formation. This points to a necessity for measuring updraft velocity from space in our future satellite mission. The observation-based statistics also serve as a reference for evaluating climate models in their representations of fundamental cloud processes. The methodologies developed have indeed been applied to a hierarchy of models, including global climate models and global/regional cloud-resolving models, to identify their key biases in representations of fundamental microphysical processes. Such a new process-based model constraint has also been contrasted against a traditional “performance-oriented” model evaluation based on historical trends of global mean temperature to expose their apparent dichotomy. This implies the presence of compensating errors at a fundamental process level in current climate models and underscores the necessity of further efforts for “process-oriented” model diagnostics with a synergistic use of upcoming multiple satellite observations.