日本地球惑星科学連合2016年大会

講演情報

インターナショナルセッション(口頭発表)

セッション記号 A (大気水圏科学) » A-CG 大気水圏科学複合領域・一般

[A-CG10] Earth and Planetary satellite observation project Part II

2016年5月24日(火) 10:45 〜 12:15 303 (3F)

コンビーナ:*沖 理子(宇宙航空研究開発機構)、早坂 忠裕(東北大学大学院理学研究科)、佐藤 薫(東京大学 大学院理学系研究科 地球惑星科学専攻)、佐藤 正樹(東京大学大気海洋研究所)、本多 嘉明(千葉大学環境リモートセンシング研究センター)、奈佐原 顕郎(筑波大学生命環境系)、中島 孝(東海大学情報理工学部情報科学科)、沖 大幹(東京大学生産技術研究所)、松永 恒雄(国立環境研究所環境計測研究センター)、高薮 縁(東京大学 大気海洋研究所)、村上 浩(宇宙航空研究開発機構地球観測研究センター)、岡本 創(九州大学)、Gail Skofronick Jackson(NASA Goddard Space Flight Center)、Paul Chang(NOAA College Park)、Crisp David(Jet Propulsion Laboratory, California Institute of Technology)、座長:Crisp David(Jet Propulsion Laboratory)、横田 達也(独立行政法人国立環境研究所)

10:45 〜 11:00

[ACG10-19] 現場光学観測データを用いたGCOM-Cクロロフィルa濃度プロダクトの改善

*村上 浩1清本 容子2佐々木 宏明2 (1.宇宙航空研究開発機構地球観測研究センター、2.水産総合研究センター西海区水産研究所)

キーワード:GCOM、GCOM-C、SGLI、海色、クロロフィルa濃度

Global Change Observation Mission for Climate (GCOM-C) which carries Second-generation Global Imager (SGLI) is planned to be launched in Japanese Fiscal Year (JFY) 2016 (from April 2016 to March 2017). SGLI has middle spatial resolution (250 m to 1000 m), wide swath (1150 km to 1400 km), 19 bands from near-UV (380 nm) to thermal infrared (12 um) wavelengths, and two-channel (red and near infrared) slant view polarization observations. SGLI will provide several ocean color products including normalized water-leaving radiance (NWLR) (or remote sensing reflectance (Rrs)), photosynthetically available radiation (PAR), chlorophyll-a concentration (Chla), colored dissolved organic matter (CDOM), total suspended matter concentration (TSM), which will contribute to coastal environment monitoring and climate researches by the SGLI 250m resolution and wide swath.
Chla is a key parameter to know phytoplankton distribution and the ocean primary production. Traditionally, it was estimated by an empirical regression between Chla and blue/green ratio of Rrs (e.g., OC4 algorithm (O'Reilly et al., 2000)). The regression is basing on a global in-situ dataset (e.g., NASA bio-Optical Marine Algorithm Data set, NOMAD (Werdell and Bailey, 2005)). However, the relationship can be deviated due to anomalous condition of inherent optical properties (IOPs), phytoplankton absorption, aph, CDOM + detritus absorption, adg, and particle back-scattering, bbp, especially in the coastal areas.
This study showed improvement of the Chla estimation by considering the IOP deviation through a simple IOP models (Gordon et al., 1988 and Lee et al., 2002). We tested the scheme for in-situ Rrs and Chla data observed by Seikai National Fisheries Research Institute (SNFRI) in the East China Sea, which is independent of the NOMAD dataset. Firstly, we calculated Chla1st by the traditional OC4 algorithm and aph by the linear matrix inversion scheme (Hoge and Lyon, 1996, 1999) from the observed Rrs. Then, Rrs is modified by the IOP model with the estimated aph, which is assumed to be strongly related to Chla, and average state of adg and bbp at condition of the Chla value. The average state of adg and bbp was modeled by regression with Chla basing on the NOMAD dataset in advance. Finally we recalculated Chlare by the OC4 algorithm applied to the modified Rrs. Mean absolute difference (MAD) compared to the in-situ observed Chla was improved from 50% (Chla1st) to 40% (Chlare).
This scheme assumed spectral shape of aph, adg and bbp, however they can change in various coastal environment. Collection of the in-situ bio-optical measurements in the various coastal areas is required to develop more robust GCOM-C algorithms and methodology to estimate coastal Chla.