日本地球惑星科学連合2016年大会

講演情報

インターナショナルセッション(口頭発表)

セッション記号 A (大気水圏科学) » A-OS 海洋科学・海洋環境

[A-OS03] Marine ecosystem and biogeochemical cycles: theory, observation and modeling

2016年5月23日(月) 09:00 〜 10:30 202 (2F)

コンビーナ:*伊藤 進一(東京大学大気海洋研究所)、平田 貴文(北海道大学地球環境科学研究院)、Hofmann Eileen E.(Old Dominion University)、Charles Stock(Geophysical Fluid Dynamics Laboratory)、座長:平田 貴文(北海道大学地球環境科学研究院)

09:30 〜 09:45

[AOS03-03] Colloidal pumping as a removal process of dissolved iron: a model study

*三角 和弘1Adrian Burd2Matthew Long3J. Keith Moore4Lindsay Keith3津旨 大輔1坪野 考樹1 (1.電力中央研究所 環境科学研究所、2.ジョージア大学 アセンス校、3.米国大気研究センター、4.カリフォルニア大学 アーバイン校)

キーワード:Colloidal pumping, Iron, Nutrients, Scavenging

Iron cycle is incorporated in many ocean models as its importance to marine organisms. The models, however, tends to overestimate dissolved iron (dFe) concentrations in large dust deposition areas. Such overestimation can be attributed to inappropriate formulation of iron removal where the rates are calculated as a first order function to the simulated dFe. Although some models assume higher order functions to estimate the removal rates, there is no scientific basis to explain the representations. It is known that adsorption of dissolved thorium (dTh) to colloids and subsequent coagulation (so-called “colloidal pumping”) is important to remove dTh. As colloidal iron is observed in various locations, “colloidal pumping” can play an important role on iron scavenging.
This study aims to build a new iron scavenging parameterization based on “colloidal pumping”. A mechanistic model to calculate a coupled adsorption/coagulation process is described in Burd et al. (2000) and is applied to dTh scavenging. We firstly conducted an experiment using their model to highlight an importance of “colloidal pumping”. In this experiment, we suppose an open-ocean box having a typical 238U concentration that produces 234Th by radioactive decay. Colloidal particles (< 1 μm) are continuously added to the box, and the model is run to be a steady state. Increase in colloidal particles results in colloidal coagulation and thus formation of particles. Simulated outgoing 234Th fluxes are mainly seen in diameters larger than 1 μm where the gravitational settling is significant. We then conducted an experiment without adsorption of dTh to colloids, namely turn off “colloidal pumping”. As dTh is removed only by adsorption directly to large aggregates, removal efficiency is much decreased and the simulated dTh concentration becomes several times higher. The result suggests that ignoring “colloidal pumping” results in overestimation of dissolved metals in ocean models.