日本地球惑星科学連合2016年大会

講演情報

口頭発表

セッション記号 B (地球生命科学) » B-CG 地球生命科学複合領域・一般

[B-CG09] 生命-水-鉱物-大気相互作用

2016年5月23日(月) 13:45 〜 15:00 A02 (アパホテル&リゾート 東京ベイ幕張)

コンビーナ:*中村 謙太郎(東京大学大学院工学系研究科システム創成学専攻)、大竹 翼(北海道大学大学院工学研究院 環境循環システム部門)、鈴木 庸平(東京大学大学院理学系研究科)、高井 研(海洋研究開発機構極限環境生物圏研究センター)、上野 雄一郎(東京工業大学大学院地球惑星科学専攻)、長沼 毅(広島大学大学院生物圏科学研究科)、掛川 武(東北大学大学院理学研究科地学専攻)、横山 正(大阪大学大学院理学研究科宇宙地球科学専攻)、白石 史人(広島大学大学院理学研究科地球惑星システム学専攻)、座長:白石 史人(広島大学大学院理学研究科地球惑星システム学専攻)

14:15 〜 14:30

[BCG09-03] Lysine polymerization on amorphous silica: A thermodynamic evaluation

*西井 明梨1北台 紀夫1時盛 ひとみ黒川 顕1 (1.東京工業大学)

キーワード:Adsorption, Lysine, Silica

When, where and how did life on the Earth originate? To resolve that fundamental question, one must first ascertain the reactivity of biomolecules, and the response of reactivity to changing environmental conditions such as pH, temperature, dissolved composition, and mineral surfaces. Amino acids are building blocks of proteins, which are fundamental to life. Therefore, the polymerization behavior of amino acids has been a topic of many experimental and theoretical works (Shock, 1992).
This study focuses on thermodynamic effects of minerals on amino acid polymerization. To date, widely various oxide minerals and clays has been examined for their roles in this reaction (Cleaves et al., 2012). Results have demonstrated their positive influences with regard to reaction rate, peptide length, and the amounts of polymers synthesized. However, reported experiments have mostly emphasized catalytic properties of minerals. Consequently, in most cases, experiments have been terminated before polymerization reaches its steady state. It remains unclear whether minerals promote polymerization in thermodynamics as well as kinetics.
To examine the thermodynamic effects, we have evaluated adsorption behaviors of amino acids and peptides on minerals by using extended triple layer model (ETLM; Sverjensky and Fukushi, 2006). Obtained adsorption parameters are used, by combining thermodynamic parameters for amino acids and peptides in aqueous solution, to predict amino acid/peptide equilibria on mineral surfaces. In this presentation, we will present our findings for a lysine/amorphous silica system.