日本地球惑星科学連合2016年大会

講演情報

インターナショナルセッション(口頭発表)

セッション記号 H (地球人間圏科学) » H-TT 計測技術・研究手法

[H-TT08] Geoscientific applications of high-definition topography and geophysical measurements

2016年5月22日(日) 10:45 〜 12:00 202 (2F)

コンビーナ:*早川 裕弌(東京大学空間情報科学研究センター)、佐藤 浩(日本大学文理学部)、内山 庄一郎(国立研究開発法人防災科学技術研究所)、楠本 成寿(富山大学大学院理工学研究部(理学))、Wasklewicz Thad(East Carolina University)、Giordan Daniele(National Research Council, Rome)、小花和 宏之(千葉大学環境リモートセンシング研究センター)、座長:楠本 成寿(富山大学大学院理工学研究部(理学))、早川 裕弌(東京大学空間情報科学研究センター)

11:05 〜 11:25

[HTT08-07] Simulating and Quantifying Legacy Topographic Data Uncertainty: An Initial Step to Advancing Topographic Change Analyses

★招待講演

*Thad A Wasklewicz1Zhen Zhu1Paul Gares1 (1.East Carolina University)

キーワード:data uncertainty, topography, geomorphology

Integrating the disparate datasets (e.g. aerial photographs and point cloud data gathered with a variety of more recent sources) to unravel topographic changes in varying geomorphic contexts involves a number of issues. These issues range from data compatibility associated with the different data collection techniques, to legacy data that contain unknown error, unreported error, or in some cases known deficiencies, to integrating this information in a manner whereby scientists can definitively derive the extent to which a landform or landscape has and will continue to change in response natural and/or anthropogenic processes. Here, we examine the question: how do we evaluate and portray data uncertainty from the varied topographic legacy sources and combine this uncertainty with current spatial data collection techniques to detect topographic changes? Digital terrain model (DEM) uncertainty can be modeled as a stochastic process. The uncertainty model tends to vary across the region of interest, and yet remain locally correlated. We consider the spatial variability and correlation on a grid of anchor points. The elevation uncertainties observed on the anchor points are modeled using “states” in a stochastic estimator. This type of estimators is used track the evolution of the uncertainties. The estimator is natively capable of incorporating sensor measurements with various times of validity. Even when a sensor does not directly observe an anchor point, the geometric relationship between the anchor point and the sensor measurement can still be approximated, thanks to spatial correlation. Our results show it is indeed possible to incorporate measurements and data from a variety of sources and quality. The estimator provides a history of DEM estimation as well as the uncertainties and cross correlations observed on anchor points. Our work provides preliminary evidence that our initial approach is valid and warrants further exploration. Our intent is to corroborate and further develop this work with data and results from physical models and multi-temporal field data and analyses.