日本地球惑星科学連合2016年大会

講演情報

口頭発表

セッション記号 H (地球人間圏科学) » H-TT 計測技術・研究手法

[H-TT23] 環境リモートセンシング

2016年5月23日(月) 13:45 〜 15:15 202 (2F)

コンビーナ:*石内 鉄平(明石工業高等専門学校)、島崎 彦人(独立行政法人国立高等専門学校機構 木更津工業高等専門学校)、近藤 昭彦(千葉大学環境リモートセンシング研究センター)、作野 裕司(広島大学大学院工学研究院)、長谷川 均(国士舘大学文学部地理学教室)、桑原 祐史(茨城大学 広域水圏環境科学教育研究センター)、座長:野中 崇志(日本大学 生産工学部 環境安全工学科)

14:00 〜 14:15

[HTT23-02] Classification and Regression Tree Analysis of the Relationship between the Yellow Dust Concentration and TOA Reflectance observed with GOSAT CAI Sensor

*小川 達寛1島崎 彦人1 (1.独立行政法人国立高等専門学校機構 木更津工業高等専門学校)

キーワード:Classification and Regression Tree、Yellow dust、GOSAT CAI

Yellow dust, which is also known as yellow sand or Asian dust, is a seasonal meteorological phenomenon commonly observed in East Asia during the months of spring. The dust originates from the deserts of southern Mongolia and northern China and is then carried eastward by prevailing winds, passing over China, North and South Korea, and Japan, as well as parts of the Russian Far East. Although the major components of the dust are sand and materials from the earth’s crust, the possible adverse health effects of high concentration of the dust has been becoming a public concern for the regions in East Asia. To address the problem of transboundary air pollution, collecting and visualizing the data of dust concentrations is of importance as a first step. Satellite remote sensing has contributed to the near real-time monitoring of air pollutants over a broad spatial scale. The Thermal And Near-infrared Sensor for carbon Observation (TANSO) - Cloud and Aerosol Imager (CAI) sensor on board the Greenhouse gases Observing SATellite (GOSAT), which was designed to estimate the types and optical thickness of aerosols, is expected to have capability to detect the Yellow dust concentrations. However, its capability has not yet been confirmed well. This study statistically explored the relationship between the Yellow dust and the top-of-atmosphere (TOA) reflectance of wavelengths from near-ultraviolet (0.380 mm) to near-infrared (1.60 mm) observed by GOSAT CAI sensor, aiming to obtain fundamental information to generate an imagery product that visually enhances the Yellow dust concentrations. First we transformed the radiance in the CAI L1B product to the TOA reflectance, which was considered in this study as a response variable. Second we collected a suite of predictor variables which were expected to have some impact on the variation of TOA reflectance. The predictor variables concerning atmosphere conditions include: (1) the total amount of the Yellow dust above the ground, which was calculated from the estimates of the Chemical weather FORecasting System (CFORS); and (2) the clear-sky confidence level retrieved from the CAI L2 product. The predictor variables regarding land- and sea-surface conditions include: (1) the land-surface reflectance; and (2) sea-surface reflectance data. Both of them were retrieved from the CAI L3 product. Third the response and predictor variables were linked together by match-up processing in terms of time and location. Finally we employed a recursive partitioning approach known as Classification and Regression Tree (CART), where the resulting model could be represented graphically as a decision tree. Preliminary results of the CART analysis with the match-up data showed the relationship between the predictor and response variables to be different for each band. Findings from the resultant decision trees would provide us with a clue of how to deal with each band to generate an imagery product that visually enhances the Yellow dust concentrations over a broad spatial scale.