Japan Geoscience Union Meeting 2016

Presentation information

Poster

Symbol M (Multidisciplinary and Interdisciplinary) » M-AG Applied Geosciences

[M-AG24] Dynamics of radionuclides emitted from Fukuchima Dai-ichi Nuclear Power Plant in the environment

Mon. May 23, 2016 5:15 PM - 6:30 PM Poster Hall (International Exhibition Hall HALL6)

Convener:*Kazuyuki Kita(Faculty of Science, Ibaraki University), Yuichi Onda(Center for Research on Isotopes and Environmental Dynamics, University of Tsukuba), Teruyuki Nakajima(Japan Aerospace Exploration Agency), Yasuhito Igarashi(Atmospheric Environment and Applied Meteorology Research Department, Meteorological Research Institute), Masatoshi Yamada(Institute of Radiation Emergency Medicine, Hirosaki University), Chisato Takenaka(Graduate School of Bioagricultural Sciences, Nagoya University), masayoshi yamamoto(Low Level Radioactivity Laboratory, Kanazawa University), Jota Kanda(Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology), Atsushi Shinohara(Osaka university)

5:15 PM - 6:30 PM

[MAG24-P04] Correlation-study about the ambient dose rate and the weather conditions

*Masato Furuya1, Yuko Hatano1, Tomoo Aoyama2, Yasuhito Igarashi3, Kazuyuki Kita4, Masahide Ishizuka5 (1.Department of Risk Engineering, Faculty of Systems and Information Engineering, University of Tsukuba, 2.Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, 3.Meteorological Research Institute, 4.College of Science, Ibaraki University, 5.Faculty of Engineering, Kagawa University)

Keywords:Fukushima Accident, Radioactive nuclides, Karman Filter

The long-term radiation risks are believed to be heavily affected by the resuspension process. We therefore focus on the surface-atmosphere exchange process of released radioactive materials in this study. Radioactive materials were deposited on the soil and float in the air, and such complicated process are influenced by the weather conditions deeply. We need to reveal the correlation between the weather conditions and the ambient dose rate.
In this study, we study the correlation between the weather conditions and the ambient dose rate with the correction of the decrease due to the radioactive decay. We found that there is a negative correlation between the ambient dose rate and the soil water content by the correlation coefficient. Using this result, we reconstruct the ambient dose rate from the weather conditions by the multiple regression analysis and found that the reconstructed data agree with the observation very well. Using Kalman filter, which can be sequentially updates the state estimate, we obtained such a good agreement.