日本地球惑星科学連合2016年大会

講演情報

ポスター発表

セッション記号 M (領域外・複数領域) » M-TT 計測技術・研究手法

[M-TT28] 地球化学の最前線:未来の地球化学を展望して

2016年5月22日(日) 17:15 〜 18:30 ポスター会場 (国際展示場 6ホール)

コンビーナ:*小畑 元(東京大学大気海洋研究所海洋化学部門海洋無機化学分野)、角野 浩史(東京大学大学院総合文化研究科広域科学専攻相関基礎科学系)、横山 哲也(東京工業大学大学院理工学研究科地球惑星科学専攻)、平田 岳史(京都大学大学院理学研究科地球惑星科学専攻)、角皆 潤(名古屋大学大学院環境学研究科)、高橋 嘉夫(東京大学大学院理学系研究科地球惑星科学専攻)、橘 省吾(北海道大学大学院理学研究院自然史科学専攻地球惑星システム科学分野)、鈴木 勝彦(国立研究開発法人海洋研究開発機構・海底資源研究開発センター)、下田 玄(産業技術総合研究所地質調査総合センター)、鍵 裕之(東京大学大学院理学系研究科附属地殻化学実験施設)、横山 祐典(東京大学 大気海洋研究所 高解像度環境解析研究センター)

17:15 〜 18:30

[MTT28-P04] コンドライトの核合成起源のイッテルビウム同位体異常

*横山 哲也1中原 正貴1深井 稜汰1 (1.東京工業大学大学院理工学研究科地球惑星科学専攻)

キーワード:同位体異常、コンドライト、イッテルビウム

Recent studies on high precision isotope analyses for bulk aliquots of meteorites discovered the existence of planetary scale nucleosynthetic isotope variabilities for a variety of elements (e.g., Cr, Sr, Mo, Ru) [1-4]. By contrast, some elements (Hf, W, and Os) do not show such anomalies at the current level of analytical precision [5-7]. The processes responsible for generating the isotopic heterogeneity/homogeneity in the early Solar System are not fully resolved yet, however, two plausible models have been proposed to account for the isotopic characteristics recorded in meteorites. The first model considers nebular thermal processing which caused selective destruction of thermally weak-isotopically anomalous carriers, followed by subsequent physical separation of volatile phase and ultra-refractory components [8]. On the other hand, the injection of isotopically anomalous materials from a nearby core-collapse supernova (ccSN) and subsequent aerodynamic sorting of grains in different sizes can be an alternative possibility to cause planetary scale isotope heterogeneity [9].
Ytterbium is an intriguing element which would provide a strong constraint on the origin of planetary scale isotope anomalies in the Solar System. The T50% for Yb (1487 K) is lower than those of the other heavy-REEs (1659 K) and is comparable to that of Sr. Therefore, the thermal processing would lead to heterogeneous Yb isotope distribution in the Solar System, whereas the injection of a nearby ccSN would not generate r-nuclides of Yb. Here we report preliminary results on Yb isotope compositions in one ordinary chondrite (Olivenza, LL5) and one rumuruti chondrite (NWA 753, R3.9).
The Yb isotope ratios for meteorite samples are reported as µYb notations which represent the parts par 106 deviations from the terrestrial isotope ratios. The ordinary and rumuruti chondrites possess large negative anomalies for µ168Yb (–2500 ppm on average) and µ170Yb (–130 ppm on average) exceeding analytical uncertainties of the standard material, whereas the µ171Yb, µ173Yb, and µ176Yb values are indistinguishable from the terrestrial component. The patterns of µYb for the chondrites are not consistent with that representing the deficit of s-process nuclides relative to the terrestrial component. Therefore, the negative anomalies in in µ68Yb and µ170Yb are attributed either to the deficit of p-process nuclides relative to the terrestrial component, or to the analytical artifact due to the overcorrection of interferences from 168Er and 170Er. By contrast, the absence of anomalies for µ171Yb, µ173Yb, and µ176Yb is consistent with the marginal isotope anomalies in ordinary chondrites for Mo and Ru isotopes synthesized by the s- and r-processes, which are significantly smaller than those observed in carbonaceous chondrites and iron meteorites [3-4].
References: [1] Trinquier, A. et al. (2009) Science 324, 374. [2] Yokoyama, T. et al. (2015) EPSL 416, 46. [3] Burkhardt, C. et al. (2011) EPSL 312, 390. [4] Fischer-Gödde, M. et al. (2015) GCA 168, 151. [5] Akram, W. et al. (2013) ApJ 777, 169. [6] Yokoyama, T. et al. (2010) EPSL 291, 48. [7] Burkhardt, C. et al. (2012) EPSL 357–358, 298. [8] Yokoyama, T. and Walker, R.J. (2016) RiMG 81, 107. [9] Dauphas, N. et al. (2010) ApJ 720, 1577.