日本地球惑星科学連合2016年大会

講演情報

インターナショナルセッション(ポスター発表)

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM04] Space Weather, Space Climate, and VarSITI

2016年5月22日(日) 17:15 〜 18:30 ポスター会場 (国際展示場 6ホール)

コンビーナ:*片岡 龍峰(国立極地研究所)、プルキネン アンティ(NASAゴダード宇宙飛行センター)、海老原 祐輔(京都大学生存圏研究所)、三好 由純(名古屋大学宇宙地球環境研究所)、清水 敏文(宇宙航空研究開発機構宇宙科学研究所)、浅井 歩(京都大学宇宙総合学研究ユニット)、陣 英克(情報通信研究機構)、佐藤 達彦(日本原子力研究開発機構)、草野 完也(名古屋大学宇宙地球環境研究所)、宮原 ひろ子(武蔵野美術大学造形学部)、伊藤 公紀(横浜国立大学大学院工学研究院)、塩川 和夫(名古屋大学宇宙地球環境研究所)、中村 卓司(国立極地研究所)、余田 成男(京都大学大学院理学研究科地球惑星科学専攻)、一本 潔(京都大学大学院理学研究科附属天文台)、石井 守(国立研究開発法人情報通信研究機構)

17:15 〜 18:30

[PEM04-P01] A critical review on solar cycle variation of interplanetary magnetic flux ropes

*丸橋 克英1 (1.アジア宇宙環境研究機構)

キーワード:coronal mass ejection, solar-cycle variation

The interplanetary magnetic flux rope (IFR) has been a subject of extensive research activity since its discovery in 1981 as a key structure in the solar wind that provide important information on the solar eruption phenomena and on how the southward magnetic fields are carried from the Sun to the Earth. In this review, we discuss solar-cycle variation of occurrence frequency of IFRs that still remains unsettled, based on our own results. First, we have found more than 500 IFRs in the time period from 1995 to 2009, whereas the survey by Lepping et al. (AnnGeo, 2006) identified 82 IFRs during 1995-2003. The difference mainly comes from the fact that their survey was not successful in identifying IFRs when the spacecraft passed only near the surface of IFRs. Our result indicates that the rate of IFR occurrence to the ICMEs should be much higher than those which were suggested by previous evaluation. Secondly, the following trend is clearly seen: namely, the occurrence rate of IFRs increases rapidly after the 1996 solar minimum, reaches maximum in 1998, and then decreases monotonically toward the next solar minimum. This trend seems in concert with the trend of the magnetic butterfly diagram (Hathaway, http://solarscience.msfc.nasa.gov/images/magbfly.jpg). The time of rapid increase of IFR rate coincides with the time when the active regions begin to emerge at mid latitude (Li et al., Solar Phys., 2011). In addition, Marubashi et al. (Solar Phys. 2015) found that 2/3 of IFRs were erupted from neutral lines at the Hale boundaries, using another data base. An important implication is that the IFR occurrence should be closely related with the evolution of large-scale solar magnetic fields. An interesting question arises also: how the Hale boundaries are preferably selected for any instabilities to occur that lead CMEs. In a more general term, interrelationships among the occurrence of IFRs, CMEs, flares, and sunspot cycle seem to be an unsettled problem.