日本地球惑星科学連合2016年大会

講演情報

インターナショナルセッション(ポスター発表)

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM04] Space Weather, Space Climate, and VarSITI

2016年5月22日(日) 17:15 〜 18:30 ポスター会場 (国際展示場 6ホール)

コンビーナ:*片岡 龍峰(国立極地研究所)、プルキネン アンティ(NASAゴダード宇宙飛行センター)、海老原 祐輔(京都大学生存圏研究所)、三好 由純(名古屋大学宇宙地球環境研究所)、清水 敏文(宇宙航空研究開発機構宇宙科学研究所)、浅井 歩(京都大学宇宙総合学研究ユニット)、陣 英克(情報通信研究機構)、佐藤 達彦(日本原子力研究開発機構)、草野 完也(名古屋大学宇宙地球環境研究所)、宮原 ひろ子(武蔵野美術大学造形学部)、伊藤 公紀(横浜国立大学大学院工学研究院)、塩川 和夫(名古屋大学宇宙地球環境研究所)、中村 卓司(国立極地研究所)、余田 成男(京都大学大学院理学研究科地球惑星科学専攻)、一本 潔(京都大学大学院理学研究科附属天文台)、石井 守(国立研究開発法人情報通信研究機構)

17:15 〜 18:30

[PEM04-P07] The role of η-quenching in MHD flux transport dynamo

*市村 千晃1横山 央明1 (1.東京大学大学院理学系研究科地球惑星科学専攻)

“Flux-transport dynamo” (FTD), which is one model of the solar dynamos, succeeded to reproduce the basic solar cycle features. However, most of FTD studies have addressed the time-development of the magnetic field in a purely kinematic regime. In a kinematic regime, the fluid velocity is given from observation or other theories, so only magnetic induction equation is solved. On the other hand, in a non-kinematic (or MHD) regime, both of magnetic field and fluid velocity field are computed by solving magnetic induction equation and Navier-Stokes equation. So this regime allows for the feedback of the Lorentz force on fluid velocity field. Rempel (2006) conducted FTD simulation in a non-kinematic regime and showed FTD model worked successfully even if strong feedback on fluid velocity existed.
Here we address FTD simulation based on the model of Rempel (2006) and includes “η-quenching”, which is not considered in Rempel (2006). It is known that the turbulent magnetic diffusivity used in the solar dynamos is quenched by the existence of strong magnetic fields. This phenomenon is called as η-quenching. And η-quenching can be a powerful mechanism for amplifying magnetic fields (Gilman & Rempel, 2005). The following presents the reasons why we include the effect of η-quenching. One reason is that the maximum magnetic field strength is around 15 kG in Rempel (2006), though rising flux tube simulation (Weber et al., 2011) concluded that magnetic flux tubes forming sunspots should have field strengths around 40-50 kG. The other reason is that no study has investigated the role of η-quenching in a non-kinematic FTD model. Stronger magnetic fields amplified by η-quenching result in stronger feedback to fluid velocity. To investigate this effect, we need to conduct a non-kinematic dynamo simulation in which both of velocity fields and magnetic fields are computed.
We find that η-quenching can amplify magnetic fields even in a non-kinematic regime and the maximum magnetic field strength can be up to around 2 times larger than the case without the effect of η-quenching. However, this amplification leads to the significant feedback to fluid velocity. This feedback makes the amplitude of temporal variations of the solar rotation rate, which is known as torsional oscillations, too large to be consistent with observation.