日本地球惑星科学連合2016年大会

講演情報

インターナショナルセッション(ポスター発表)

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM04] Space Weather, Space Climate, and VarSITI

2016年5月22日(日) 17:15 〜 18:30 ポスター会場 (国際展示場 6ホール)

コンビーナ:*片岡 龍峰(国立極地研究所)、プルキネン アンティ(NASAゴダード宇宙飛行センター)、海老原 祐輔(京都大学生存圏研究所)、三好 由純(名古屋大学宇宙地球環境研究所)、清水 敏文(宇宙航空研究開発機構宇宙科学研究所)、浅井 歩(京都大学宇宙総合学研究ユニット)、陣 英克(情報通信研究機構)、佐藤 達彦(日本原子力研究開発機構)、草野 完也(名古屋大学宇宙地球環境研究所)、宮原 ひろ子(武蔵野美術大学造形学部)、伊藤 公紀(横浜国立大学大学院工学研究院)、塩川 和夫(名古屋大学宇宙地球環境研究所)、中村 卓司(国立極地研究所)、余田 成男(京都大学大学院理学研究科地球惑星科学専攻)、一本 潔(京都大学大学院理学研究科附属天文台)、石井 守(国立研究開発法人情報通信研究機構)

17:15 〜 18:30

[PEM04-P27] Mode Conversion of Alfven Waves Propagating in the Solar Chromosphere and Contribution to the Heating

*河野 隼也1横山 央明1 (1.東京大学)

キーワード:chromosphere, wave, nonlinear, heating

Alfven waves, which are generated in the solar photosphere and propagate along magnetic flux tubes, have been suggested to carry sufficient energy to the upper solar atmosphere and heat the atmosphere through wave dissipation. The chromosphere is an intermediate layer connecting the photosphere to the corona. Propagation and dissipation of waves in the chromosphere regulate the energy flux penetrating the corona. The chromospheric heating by waves is important for understanding the mechanism of solar atmospheric heating and solar wind acceleration. In this presentation, we report on our numerical works of Alfven wave propagation along open flux tubes from the solar convection zone to the corona. In 1.5-dimensional magnetohydrodynamic (MHD) numerical simulations, it is shown that 60–90% of the upward-propagating Alfvenic pulse with frequencies of 3–100 mHz are reflected at the transition region, which is the top boundary of the chromosphere. Meanwhile, most of the waves reflected at the transition region penetrate the convection zone without being reflected at the bottom of the photosphere. These results suggest that Alfven waves are unlikely to be trapped in the chromosphere. During the wave propagation in the chromosphere, Alfven waves exhibit nonlinear effects with longitudinal wave generation. The mode conversion rate is calculated with different plasma beta in the chromosphere. In the case with low plasma beta (∼ 0.1–1), 0.01–1% of input Alfven wave energy is converted to the longitudinal wave energy. This energy is almost comparable to the required energy for the chromospheric heating. As plasma beta becomes larger and background Alfven speed becomes smaller in the chromosphere, more longitudinal wave appears due to increase of nonlinearity of the Alfven wave. In the case with high plasma beta (∼ 1–10), the mode conversion rate becomes 1–10%. The generated longitudinal waves carry sufficient energy to heat the chromosphere.