日本地球惑星科学連合2016年大会

講演情報

インターナショナルセッション(口頭発表)

セッション記号 P (宇宙惑星科学) » P-PS 惑星科学

[P-PS02] Mars

2016年5月23日(月) 13:45 〜 15:15 104 (1F)

コンビーナ:*佐藤 毅彦(宇宙航空研究開発機構・宇宙科学研究本部)、石渡 正樹(北海道大学大学院理学院宇宙理学専攻)、佐々木 晶(大阪大学大学院理学研究科宇宙地球科学専攻)、高橋 芳幸(神戸大学大学院理学研究科)、松岡 彩子(宇宙航空研究開発機構 宇宙科学研究所 太陽系科学研究系)、宮本 英昭(東京大学総合研究博物館)、Atreya Sushil(University of Michigan Ann Arbor)、座長:高橋 芳幸(神戸大学大学院理学研究科)

14:30 〜 14:45

[PPS02-03] Warmer Wetter Mars in the Past?

*Sushil K Atreya1Paul Mahaffy2Christopher Webster3Pamela Conrad4Michael Wong5 (1.University of Michigan Ann Arbor、2.NASA/GSFC、3.NASA/JPL、4.GSFC、5.U-Michigan)

キーワード:Mars, Climate Evolution, Isotopes

The isotopes of CO2 (13C/12C, 18O/16O), H2O (D/H), N2 (15N/14N), Ar (38,40Ar/36Ar), Kr and Xe are excellent indicators of climate change in the atmosphere of Mars. Recent high precision measurements of those isotopes with the quadrupole mass spectrometer and the tunable laser spectrometer of the Sample Analysis (SAM) suite of instruments on the Curiosity Rover clearly show that the atmosphere of Mars has been substantially depleted over the past four billion years. At the same time, both geological evidence and a comparison of the D/H isotope ratios in water vapor in the atmosphere with the Hesperian-era Gale Crater smectite rock fines, and even older Mars meteorites suggest a relatively large abundance of (liquid) water on the surface of Mars in the past. With the exception of xenon, the above isotopes inform about the change since roughly 4 Ga. The isotopic fractionations in xenon suggest, in addition, a massive H2-driven hydrodynamic escape very early in the geologic history of Mars. Employing the isotopic record in the atmosphere and rock fines, we investigate a scenario of Mars where atmospheric composition and relatively high atmospheric pressure resulted in warmer conditions necessary for maintaining surface liquid water at least intermittently through late Noachian/early Hesperian, followed by a gradual loss of the atmosphere by escape since then, hence warmer and wetter conditions in the past compared to Mars’ present cold and arid state.