日本地球惑星科学連合2016年大会

講演情報

口頭発表

セッション記号 S (固体地球科学) » S-CG 固体地球科学複合領域・一般

[S-CG63] 変動帯ダイナミクス

2016年5月24日(火) 09:00 〜 10:30 A08 (アパホテル&リゾート 東京ベイ幕張)

コンビーナ:*深畑 幸俊(京都大学防災研究所)、重松 紀生(独立行政法人産業技術総合研究所活断層・火山研究部門)、加藤 愛太郎(名古屋大学大学院環境学研究科)、岩森 光(海洋研究開発機構・地球内部物質循環研究分野)、池田 安隆(東京大学大学院理学系研究科地球惑星科学専攻)、竹下 徹(北海道大学大学院理学院自然史科学専攻)、座長:深畑 幸俊(京都大学防災研究所)、芝崎 文一郎(建築研究所国際地震工学センター)

09:15 〜 09:30

[SCG63-26] 地震,測地,地形データから推定される島弧地殻の変形速度

*松浦 充宏1野田 朱美2深畑 幸俊3 (1.統計数理研究所、2.構造計画研究所、3.京都大学防災研究所)

キーワード:島弧地殻、変形速度、非弾性歪み、地震データ、測地データ、地形データ

Steady plate subduction brings about steady uplift of the island-arc lithosphere [1]. This process is simply explained as convex upward bending of an elastic plate by the effect of gravity [2]. So, there is no analogy in mechanism between the steady uplift and steady horizontal shortening or stretching of island-arc crust. The island-arc crust is basically elastic, but it includes a number of defects. Brittle fracture and/or plastic flow at these defects, which occur so as to release the overall elastic strain energy produced by mechanical interaction at plate interfaces, cause the horizontal shortening or stretching of island-arc crust [3]. To sum up, the crustal shortening or stretching is a purely inelastic deformation process. In northeast Japan, for example, the evidence of crustal shortening has been reported from seismic, geodetic, and geomorphic data [4, 5]. The point is a discrepancy in its rates. One of the reasons is difference in the length of observation periods. Actually, geodetic observation is too short to cover the entire cycle of large earthquakes. Another, more essential, reason is that different kinds of data provide different information about crustal deformation; that is, seismic and geomorphic data provide information about purely inelastic crustal deformation, whereas geodetic data provide information about total (elastic + inelastic) crustal deformation. So, we cannot directly compare the crustal shortening rates from geodetic data with those from seismic and geomorphic data unless geodetically observed deformation is divided into the elastic and inelastic parts [3].

References
[1] Matsu’ura, M. and T. Sato (1989), A dislocation model for the earthquake cycle at convergent plate boundaries, Geophys. J. Int., 96, 23-32.
[2] Fukahata, Y. and M. Matsu’ura (2016), Characteristics of island arc deformation due to steady plate subduction, Geophys. J. Int., 204, 825-840.
[3] Noda, A. and M. Matsu’ura (2010), Physics-based GPS data inversion to estimate 3-D elastic and inelastic strain fields, Geophys. J. Int., 182, 513-530.
[4] Wesnousky, S.G., C.H. Scholz, and K. Shimazaki (1982), Deformation of island arc: Rates of moment release and crustal shortening in intraplate Japan determined from seismicity and Quaternary fault data, J. Geophys. Res., 87, 6829-6852.
[5] Ikeda, Y., S. Okada, and M. Tajikara (2012), Long-term strain buildup in the Northeast Japan arc-trench system and its implications for gigantic strain-release events, J. Geol. Soc. Jpn., 118, 294-312.