日本地球惑星科学連合2016年大会

講演情報

インターナショナルセッション(口頭発表)

セッション記号 S (固体地球科学) » S-GC 固体地球化学

[S-GC16] Volatile Cycles in the Deep Earth - from Subduction Zones to the Mantle and Core

2016年5月25日(水) 13:45 〜 15:15 304 (3F)

コンビーナ:*角野 浩史(東京大学大学院総合文化研究科広域科学専攻相関基礎科学系)、羽生 毅(海洋研究開発機構 地球内部物質循環研究分野)、佐野 有司(東京大学大気海洋研究所海洋地球システム研究系)、Jackson Colin(Geophysical Laboratory, Carnegie Institution of Washington)、座長:Colin Jackson(Carnegie Institution for Science Washington)、佐野 有司(東京大学大気海洋研究所海洋地球システム研究系)

14:45 〜 15:00

[SGC16-05] Redox dehydration melting of mantle transition zone deduced from the H2O storage capacity

★招待講演

*芳野 極1櫻井 萌2坂本 直哉3圦本 尚義4 (1.岡山大学地球物質科学研究センター、2.東京工業大学地球惑星科学科、3.北海道大学創成研究機構、4.北海道大学大学院理学研究院 自然史科学部門 地球惑星システム科学分野)

キーワード:redox condition, water storage capacity, dehydration

Knowledge of the H2O storage capacities of minerals forming mantle peridotite provides essential constraints on estimation of H2O content and the onset of hydrous partial melting in the mantle. In the mantle transition zone, wadsleyite can store significant amount of H2O in their crystal structures under extremely high oxygen fugacity. However, the H2O storage capacity has not been determined under the low oxygen fugacity predicted from the mantle transition zone7. Here we report that the H2O storage capacity of wadsleyite in equilibrium with the peridotite assemblage under lower oxygen fugacity is much smaller than that under higher one. Very low H2O storage capacity of wadsleyite can attribute to the low H2O activity in the melt. Considering the more reducing state in the deep mantle, dominant speciation of volatile phases is not H2O but H2. Low H2O activity in the reduced deep mantle requires that H2O storage capacity in the Earth’s mantle is much smaller than that predicted from the maximum H2O concentration determined under the high oxygen fugacity. The hydrated and oxidised subducted slab will induce “redox dehydration melting” through decrease of oxygen fugacity by the surrounding reduced mantle transition zone. H2O in the generated melt will be reduced to hydrogen through the oxidation of iron-bearing minerals. Fe-H melt or FeHx trapping the released hydrogen would become the main carrier of hydrogen into the deep mantle.